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Introductory note – This working paper illustrates the calculation process
for estimating the undertaking-specific parameters (USP) as defined in Sol-
vency II, taking into account the underlying theoretical basis. The USPs
considered here are the unit standard deviation for the premium risk and
reserve risk submodules of non-life insurance; the analysis does not take into
account the entity-specific adjustment factors for non-proportional reinsur-
ance.

For each calculation method of the unit standard deviation we present
the formal settings proposed by European Commission; the theoretical prin-
ciples are recalled, the appropriate methods for hypothesis testing and for
assessing the “goodness-of-fit” to data are described, data necessary for cal-
culation is specified and the relevant computational issues are discussed.

This working paper has practical motivations; it coordinates “useful doc-
umentation” on methodologies, criteria, algorithms, types of analysis for the
“determination of the specific parameters” (as required by IVASS in [15]
point (g)). In order to facilitate immediate application, we occasionally re-
call notions deemed as standard in best practice, for instance on hypothesis
testing.

Changes in this version – A previous version of this paper has been published
in April 2015, as Working Paper No. 9 of the Department of Economics of
University of Perugia. Compared to the previous version, this paper extends
the theoretical and methodological analysis to some new topics about USP
that have been discussed in recent months. Furthermore it specifies some
practical approaches that seem to have become part of the current best
practice.

In summary, in Section 1.a. it has been widened and deepened the
analysis of the theoretical model underlying “Method 1”; in Part II some
issues concerning input data, in particular that net of reinsurance, have been
clarified and updated. Furthermore two short appendices have been added:
in Appendix A there are some considerations on hypothesis testing when
autocorrelation and eteroscedasticity are present in the data; in Appendix B
the resampling of individual data by Block Bootstrap methods is considered.

The authors are grateful to Stefano Cavastracci for the useful discussions
that allowed the clarification of some critical issues contained in this updated
version.
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Part I

The theoretical models and the
related hypothesis testing

1 The theoretical models underlying the standard-
ised methods for USP

Delegated Acts specify two standardised methods to calculate the undertaking-
specific unit standard deviations. Method 1 can be used for both the pre-
mium risk and the reserve risk submodule, Method 2 is an alternative ap-
proach which can be applied only to the reserve risk submodule. Each
method is based on a specific underlying stochastic model, that we briefly
describe as follows.

1.a Reference Model for Method 1 (Model M1)

The reference model for the unit standard deviation according to Method 1
has been defined by the Joint Working Group on Non-Life and Health NSLT
Calibration (JWG) in [9], in the context of the market-wide calibration study
for the premium and reserve risk factors in the underwriting risk module of
the SCR standard formula.

The theoretical model underlying Method 1 (Model M1 hereafter), is one
of the four alternative models analized and tested by the JWG in the cali-
bration activity on European market data. For each segment of the non-life
activity, these models consider a random variable Y , the variance of which
must be determined and estimated based on its theoretical relations with
an explanatory variable X, taken as a volume measure. In the applications
to premium risk, the dependent variable Y corresponds to the aggregated
claims cost of a given accident year and the independent variable X repre-
sents the corresponding level of the earned premiums. In the applications
to reserve risk, the two variables X and Y represent the ultimate cost esti-
mated respectively at the beginning and at the end of the reference year for
claims occurred in the previous years.

Model M1 underlying USP calculation seems to be the one characterised
in the JWC calibration study as the class of “Lognormal Models, Second
Variance Parametrisation”. The model is based on the following assump-
tions.

M1M - Assumption on the mean:

E(Y ) = β X .
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M1V - Assumption on the variance:

Var(Y ) = β2σ2
[
(1− δ)XX + δX2

]
, (1.1)

where:

X =
1

T

T∑
t=1

Xt ,

is the sample mean of a yearly time series X1, X2, . . . , XT of observations of
X.

M1D - Assumption on the distribution:

lnY v Normal(µ, ω) ,

where:

ω = ln
{

1 + σ2
[
(1− δ)X/X + δ

]}
, µ = ln(βX)− ω

2
. (1.2)

In order to estimate the model we need to estimate the parameters β, σ
and δ. In particular,

· δ ∈ [0, 1] is a mixing parameter. If δ = 1 the variance of Y has a quadratic
relation with X, while if δ = 0, the variance of Y is proportional to X.

· σ approximates (in practice, it coincides with) the variation coefficient
of Y , Cv(Y ) = Std(Y )/E(Y ). Therefore an estimate of σ provides the
value of the undertaking-specific unit standard deviation for premium
risk or reserve risk (depending on how the random variables X and Y are
interpreted).

Remark. Assumption M1V that specifies the variance of Y as a quadratic
function of X, is motivated by the JWG as being a “realistic” extension of
the Compound Poisson model often used for the underwriting risk within
the actuarial practice (see e.g. [24], Chapter 3). In the Compound Poisson
model, whose parameters are constant over time, the mean an the variance
of the aggregated claims cost is a linear function of portfolio size. If we
move from an assumption of constant parameters to one of time-varying
parameters according to a stochastic (stationary) process, we still obtain
a linear expression for the mean but an expression of the type Var(Y ) =
σ21XX + σ22X

2 for the variance. If we assume in addition that Var(Y )
is proportional to β2 (this is “the second variance parametrisation”) we
obtain, with some manipulations, expression (1.1). This result implies that
the variation coefficient of Y is independent of β. Moreover it allows to
obtain maximum likelihood parameter estimates without using too complex
optimisation procedures.
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Remark. It should be pointed out that, within the JWG calibration study,
the constant X is defined as the arithmetic mean of the observations of X
taken on all the companies operating in the reference market. Denoting by
Xt,i the observation t of company i, in [9] one finds:

X =

∑N
i=1

∑Ti
t=1Xt,i∑N

i=1 Ti
,

where N is the number of companies operating in the market (within the
specified segment) and Ti is the number of available observations for com-
pany i. This factor has been introduced in the variance expression in order
to make the coefficient β2σ2(1− δ) independent of the monetary dimension.
In the transposition of the JWG model from a market-wide point of view to
a single-company point of view, the quantity X has been re-defined, by the
Delegated Acts, as an individual mean. This choice can further increase the
model instability for time series with a short number of observations. Also,
it brings explicit effects on the statistical tests of the M1V hypothesis (see
Section 2.a.2).

Some details on the structure of Model M1

It could be useful to recall with some details the basic structure of Model
M1, since JWG’s document simply provides a unified presentation of the
entire set of the models considered for the calibration. Moreover, compared
to the original one, the model presented in the Delegated Acts contains a
reparametrisation of the estimation function.

The parameter estimation of Model M1 is obtained by the maximum
likelihood method applied to an undertaking-specific time series of observa-
tions:

(X,Y ) = {(Xt, Yt); t = 1, 2, . . . , T} .

These observations must be considered as independent realizations of the
two-dimensional random variable (X,Y ). Let us denote by π = ω−1 the
precision (reciprocal of the variance). If one observes that the random vari-
able:

u = ln
Y

X
+

1

2π
− lnβ ,

is normally distributed with zero mean and variance 1/π, it can be easily
shown that the maximisation of the likelihood of Y is equivalent to the min-
imisation with respect to β, σ, δ, given (X,Y ), of the loss function (criterion
function):

`(β, σ, δ) =

T∑
t=1

πt u
2
t −

T∑
t=1

lnπt , (1.3)
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where, for t = 1, 2, . . . , T :

ut = ln
Yt
Xt

+
1

2πt
− lnβ , (1.4)

and:

πt =
1

ln
{

1 + σ2
[
(1− δ)X/Xt + δ

]} . (1.5)

This expression for the precisions πt is obtained by the first expression in
(1.2), which in turn is a consequence of the assumption M1V on the vari-
ance, that is expression (1.1), which is the “second variance parametrisation”
considered by the JWG. This expression of πt depends on σ and δ but is
independent of β 1, then (1.3) can be minimised with respect to lnβ. One
obtains:

ln β̂ =

∑T
t=1 at πt∑T
t=1 πt

,

with at := ln(Yt/Xt) + 1/(2πt). That is:

ln β̂ =
T/2 +

∑T
t=1 πt ln(Yt/Xt)∑T
t=1 πt

. (1.6)

Using this expression (which also depends only on σ and δ) the minimisa-
tion of the criterion function can be reduced to a two-variables problem,
consisting in the minimisation of:

`(δ, σ) =
T∑
t=1

πt

(
ln
Yt
Xt

+
1

2πt
− ln β̂

)2

−
T∑
t=1

lnπt . (1.7)

In the Delegated Acts this problem is reparametrised by replacing σ by
the parameter γ = lnσ, hence (1.5) is rewritten as:

πt(δ, γ) =
1

ln
{

1 +
[
(1− δ)X/Xt + δ

]
e2γ
} , (1.8)

(where the functional dependence by the parameters has been explicitly
indicated). Moreover the new function is introduced:

σ̂(δ, γ) := σ β̂ = eγ β̂ = exp

[
γ +

T/2 +
∑T

t=1 πt(δ, γ) ln(Yt/Xt)∑T
t=1 πt(δ, γ)

]
, (1.9)

which leads to the expression:

ln β̂ = −γ + ln[σ̂(δ, γ)] .

1This independence property directly derives from the fact that, by (1.1), the coefficient
of variation:

Cv(Y ) = σ
[
(1− δ)X/X + δ

]1/2
,

is independent of β.
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Therefore the criterion function (1.7) takes the form:

`(δ, γ) =

T∑
t=1

πt(δ, γ)

{
ln
Yt
Xt

+
1

2πt(δ, γ)
+ γ − ln [σ̂(δ, γ)]

}2

−
T∑
t=1

ln [πt(δ, γ)] ,

(1.10)
which is the expression actually provided by the official documents.

This function has to be minimised in the interval D = {δ ∈ [0, 1], γ ∈ R}
using an appropriate numerical optimisation procedure. The values δ̂ and γ̂
thus obtained are the parameter estimates which provide, through expression
(1.9), the maximum likelihood estimate σ̂(δ̂, γ̂) for the undertaking-specific
unit standard deviation for the segment considered.

Remark. Among the available estimation methods the maximum likelihood
approach has the best theoretical properties and the strongest characteristics
of probabilistic consistency (at least by a Bayesian point of view). For a reli-
able application of the method however, the maximum likelihood point (the
minimum of the loss function) must be efficiently and univocally identified.
For Model M1 this is equivalent to require that the numerical procedure used
for minimising the function `(δ, γ) – the form of which, obviously, depends
on the data (X,Y ) – has suitable convergence properties.

As required by the Delegated Acts, once the minimum of the loss function
has been obtained, the estimate σ̂(δ̂, γ̂) shall be multiplied by the “correction
factor”

√
(T + 1)/(T − 1). After this correction the estimates shall be mixed

with the standard market-wide parameter by applying the credibility factor
prescribed by EIOPA, which is a function of the time length T of the time
series used for the estimation.

On an alternative derivation of Model M1

One could propose an alternative derivation of expression (1.10) obtained
by a different formulation of the MV1 assumption. Instead of (1.1), this
different formulation could be given by:

Var(Y ) = σ2
[
(1− δ)XX + δX2

]
. (1.11)

This alternative specification of the basic assumption would be motivated
by the fact that (1.11) coincides with the “first variance parametrisation”
considered by the JWG.

Under this assumption the loss function `(β, σ, δ) is still given by (1.3)
but the precisions have the form:

πt =
1

ln
{

1 + (σ2/β2)
[
(1− δ)X/Xt + δ

]} , (1.12)
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which is no longer independent of β. This poses problems of mathemat-
ical/computational tractability in the minimisation of the `(β, σ, δ) func-
tion2. Trying to overcome these difficulties one could adopt a “pragmatic”
approach consisting in defining the new parameter:

γ := ln
σ

β
. (1.13)

With this choice the loss function `(β, σ, δ) becomes a function of γ, σ and
δ, and the precision πt depends now only on γ and δ. The tractability of
the problem of minimising `(γ, σ, δ) is then recovered. In fact since πt is
independent of σ, one can minimise `(γ, σ, δ) with respect to σ, obtaining:

σ̂(δ, γ) := exp

(∑T
t=1 bt πt∑T
t=1 πt

)
, (1.14)

with bt := ln(Yt/Xt) + 1/(2πt) + γ. Using this expression the loss function
(1.3) becomes a function only of the δ and γ variables; since lnβ = lnσ− γ,
it takes the form:

`(δ, γ) =

T∑
t=1

πt

(
ln
Yt
Xt

+
1

2πt
+ γ − ln σ̂

)2

−
T∑
t=1

lnπt . (1.15)

Obviously, under the transformation (1.13) expression (1.12) of πt coincides
with (1.8) and it is immediately proved that (1.14) coincides with (1.9),
since bt = at + γ; hence (1.15) coincides with (1.10). Therefore with this
alternative approach one obtains the same criterion function specified in the
Delegated Acts (furthermore the introduction of the parameter γ appears
better motivated).

It should be noted however that in the previous procedure the reparametri-
sation (1.13) implies a redefinition of some basic quantities. In fact, if one
introduces the definition (1.13), expression (1.11) takes the form Var(Y ) =
β2e2γ [(1−δ)XX+δ X2], which is equivalent to reintroduce assumption (1.1)
with a different notation (replacement of σ by eγ). Ultimately, then, this
alternative derivation of expression (1.10), though starting from the original
assumption of the “first variance parametrisation”, solves the minimisation
problem by implicitly transforming this assumption into the “second vari-
ance parametrisation”. Therefore it seems appropriate to consider (1.1) as
the genuine variance assumption underlying Model M1.

2 These difficulties are also indicated in JWG’s document in more places: The first
variance parametrisation is awkward from a mathematical and computational point of view.
([9], Section 6); This function [...] does not allow convenient reduction for optimisation.
([9], Section 6.1). Despite this, in Section 4.1.1 it is stated that eventually only the first
[variance parameterization] has been used to derive the sigmas..
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1.b Reference model for Method 2 (Model M2)

The reference model for the calculation of the undertaking-specific unit stan-
dard deviation according to the second standardised method is a loss re-
serving model widely quoted in the actuarial literature, known as “Merz-
Wüthrich model” [23]. Also this model has been experimented by the JWG
within its market-wide calibration study for the reserve risk factors.

With the exception of an unessential change in the technical assump-
tions3, the Merz and Wüthrich model (here also referred to as Model M2),
coincides with the well-known Distribution-Free Chain Ladder model (DFCL)
proposed by Mack in 1993 [21]. The model, however, is applied under a dif-
ferent point of view, compared with the traditional approach. In Model M2
the mean square error of prediction (MSEP), rather than been considered in
relation to the full run-off of the outstanding liabilities, is calculated under
a one-year view, being related to the Claims Development Result (CDR)
of the current accounting year. The transition from a long term view to a
one-year view is required to make the measurement of uncertainty consistent
with the prescriptions in Solvency II.

Remark. The use of a one-year point of view as the proper approach to
solvency applications had been already introduced in 2003 in [5] with a dif-
ferent name – Year-End Expectation (YEE), instead of CDR – and referred
to a different stochastic model, Over-Dispersed Poisson (ODP) instead of
DFCL model. The explicit formulas for the MSEP in the YEE version for
the DFCL model have also been derived in 2006 in [6]. The YEE point of
view has been used in a field study based on paid losses data of the Motor
Third Party Liability (MTL) Italian market produced by ISVAP in 2006 [8];
both the ODP and the DFCL model was used in this study.

For a given segment of the non-life activity, Model M2 considers the observed
paid losses X of a “run-off triangle (trapezoid)” organised by accident year
i = 0, 1, . . . , I and development year j = 0, 1, . . . , J , with I ≥ J . Therefore
Xi,j represents the “incremental” aggregated payments for claims occurred
in year i made in development year j. The corresponding cumulative pay-
ments are:

Ci,j =

j∑
k=0

Xi,k .

Model M2 is based on the following assumptions:

M2I - Independence assumption. The cumulative payments Ci,j of different
accident years are stochastically independent.

3Instead of the Markov property (see the following M2CM assumption) in DFCL model
only assumptions on the mean and the variance are used.

10



M2MC - Markov assumption. For i = 0, 1, . . . , I, the process (Ci,j)j≥0 is a
Markov Chain:

P(Ci,j ≤ x|Ci,0, Ci,1, . . . , Ci,j−1) = P(Ci,j ≤ x|Ci,j−1) .

M2M - Conditional mean assumption. For 1 ≤ j ≤ J there exist constants
fj > 0 such that for 0 ≤ i ≤ I:

E(Ci,j |Ci,j−1) = fj−1Ci,j−1 .

M2V - Conditional variance assumption. For 1 ≤ j ≤ J there exist con-
stants σj > 0 such that for 0 ≤ i ≤ I:

Var(Ci,j |Ci,j−1) = σ2j−1Ci,j−1 .

Under these assumptions one obtains that the chain ladder estimators:

f̂j =

∑I−j−1
i=0 Ci,j+1

Sj
, with Sj =

I−j−1∑
i=0

Ci,j , (1.16)

are unbiased estimators for fj , j = 0, 1, . . . , J − 1. Furthermore, the estima-
tors:

σ̂2j =
1

I − j − 1

I−j−1∑
i=0

Ci,j

(
Ci,j+1

Ci,j
− f̂j

)2

, (1.17)

are unbiased estimators of σ2j , j = 0, 1, . . . , J − 2. If I > J this expression

also holds for j = J − 1; otherwise σ2J−1 is estimated through extrapolation
as follows:

σ̂2J−1 = min

{
σ̂2J−2, σ̂

2
J−3,

σ̂4J−2
σ̂2J−3

}
. (1.18)

The estimate of the ultimate cost for the “open” accident years is obtained by
projecting the cumulative payments of the last observed “diagonal” through
the estimated chain ladder factors:

Ĉi,J = Ci,I−i

J−1∏
j=I−i

f̂j , i = I − J + 1, I − J + 2, . . . , I.

Using these estimators a closed-form expression for the MSEP estimate of
the total one-year CDR of the open accident years is obtained. This well
known expression is not reported here for brevity.

Remark. The MSEP includes both a process variance component, related
to the uncertainty of in the cost development process, and an estimation
error component, deriving from the uncertainty of the estimation of the
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unknown parameters of the model. Despite of the independence assump-
tion, this second component of uncertainty includes a covariance effect that
reduces the diversification among accident years. This effect is taken into
account in the expression of the total MSEP.

Using Model M2, the estimation of the undertaking-specific unit standard
deviation for reserve risk (in the given segment) is given by the ratio:

Ĉvres =

√
M̂SEP

R̂
, (1.19)

where R̂ =
∑I

i=I−J+1

(
Ĉi,J − Ci,I−i

)
is the estimate of the outstanding loss

liabilities (i.e. the undiscounted reserve estimate) provided by the model.
As for the USPs given by Method 1, this estimate shall be mixed with the
market-wide parameter prescribed by the Standard Formula (for the given
segment) using the credibility factor c established by EIOPA.

2 Testing the hypotheses of the theoretical models

2.a Hypothesis testing for Model M1

Following the requirements of Delegated Acts, in order to verify that the
reference model fits the entity-specific data, statistical tests have to be per-
formed on the three assumptions of Model M1 introduced in Section 1.a:

M1M – Hypothesis on the mean: linear relation (proportionality) between
E(Y ) and X,
M1V – Hypothesis on the variance: quadratic relation between variance
Var(Y ) and X,
M1D – Hypothesis on the distribution: lognormality of Y .

One also needs to verify the:

ML – Appropriateness of the maximum likelihood method used for the esti-
mation.

2.a.1 Hypothesis on the mean

In order to verify the M1M assumption of “linear proportionality” between
the means of Y e X it is sufficient to perform a classical linear regression
analysis between E(Y ) and X, with or without intercept. If one assumes
that the observations Yt can be interpreted as unbiased estimates of E(Y ),
one can perform the analysis directly on the undertaking-specific time series:

(X,Y ) = {(Xt, Yt); t = 1, 2, . . . , T}, (2.20)

12



according to the model (even with no intercept):

Yt = β0 + β1Xt + εt , t = 1, 2, . . . , T ,

where the εt variables are independent error terms with zero mean and
constant variance σ2ε .

Furthermore, one can perform a market-wide linear regression analysis,
using publicly available data on a sample of N companies similar to the
undertaking which is making the estimate. In this case, data is given by:

{(X,Y )i; i = 1, 2, . . . , N} = {(Xt,i, Yt,i); i = 1, 2, . . . , N, t = 1, 2, . . . , Ti},
(2.21)

and one considers the model (even with no intercept):

Y i = β0 + β1Xi + εi , i = 1, 2, . . . , N , (2.22)

where:

Xi =
1

Ti

Ti∑
t=1

Xt,i , Y i =
1

Ti

Ti∑
t=1

Yt,i ,

are the sample means of X and Y , respectively, of company i (usual meaning
of the error terms).

In order to test the M1M hypothesis one should measure the overall
significance of the model by checking the value of the F statistic (which
concerns the hypothesis that all parameters are zero except for the inter-
cept) and the corresponding p-value. Moreover one could consider the level
of “explained variance” of the regression by calculating the R2 coefficient
(coefficient of determination). As concerning the estimate of the single pa-
rameters, one has to verify that the coefficient β1 is significantly different
from zero and, in the case with intercept, also that β0 is not significantly
different from zero. As usual, one assumes the parameter being equal to zero
as the null hypothesis and one adopts the classical hypothesis tests available
for these applications. The standard approach for assessing the parameter
significance is a two tailed test based on the t-Student statistic at a given
significance level α (e.g. α = 10%). To reject the null hypothesis one will
consider the p-value associated to the test statistic (in this case, the prob-
ability that the absolute value of the random variable t is higher than the
observed value).

Remark. In model selection applications, it is a good practice to perform
comparisons among models by using a variety of goodness-of-fit indices nor-
malized for the number of observations and the number of parameters. One
can consider, for example, the SSE (Sum of Squared Errors) adjusted by the
Squared Degree of Freedom criterion (SDF), the SSE adjusted by the Akaike
Information Criterion and the SSE adjusted by the Bayesian Information
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Criterion. Since the statistical tests considered here do not require a com-
parison between alternative models, the use of these indexes is not necessary
and we can limit the calculation to just one of these goodness-of-fit measures
(for instance the SSE-SDF).

Additional remarks concerning autocorrelation and heteroscedasticity can
be found in Appendix A.

2.a.2 Hypothesis on the variance

In order to verify the M1V hypothesis of variance Var(Y ) being a quadratic
function of X, it is convenient to use a market-wide approach, since it is
generally not possible to obtain a reliable set of independent observations of
Var(Y ) using only entity-specific data (X,Y ). For alternative approaches
based on the resampling of individual data, however, see Appendix B.

As a practical approach, let us consider a sample of market observations:

{(X,Y )i; i = 1, 2, . . . , N} = {(Xt,i, Yt,i); i = 1, 2, . . . , N, t = 1, 2, . . . , Ti},

referred to a set of N companies similar to the one that is performing the
estimate. In order to test the variance hypothesis one can estimate on that
data the model:

V̂ari(Y ) = β0 + β1Xi + β2X
2
i + εi , i = 1, 2, . . . , N, (2.23)

where:

· V̂ari(Y ) is an estimate of the variance Vari(Y ) of company i,

· Xi is the sample mean
∑Ti

t=1Xt,i/Ti.

Given the structure of M1V assumption, the parameters in (2.23) shall have
the form:

β0 = 0, β1,i = β2σ2i (1− δi)Xi, β2,i = β2i σ
2
i δi,

where the index i denotes the dependence on the single company. In fact,
under the assumptions of Model M1 both δi and σi = β exp γi are entity-
specific. Furthermore, as observed in Section 1.a, it has been chosen by
EIOPA to change the definition of X moving from a market mean (equal
for all companies) to a company-specific mean. As a consequence, a factor
entering into β1,i coefficient will correspond to the model regressor. There-
fore, substituting the expressions for β0, β1,i and β2,i into (2.23) one obtains
the model4:

V̂ari(Y ) = β2σ2i X
2
i + εi , i = 1, 2, . . . , N . (2.24)

4The result would not substantially differ if one chose as the independent variable a
volume measure different from Xi. For example, if XTi (the most recently observed value
of X) would be chosen as the regressor, one would still have strong positive correlation
between XTi and the factor Xi entering into the β1,i coefficient, This however would
suggest to redefine the model using a quadratic volume measure as regressor.
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Denoting by σ2 =
∑N

i=1 σ
2
i /N the arithmetic mean of σ2i on the whole sample

of companies, model (2.24) can be approximated as:

V̂ari(Y ) ≈ β2X
2
i + ε̃i , i = 1, 2, . . . , N , (2.25)

with β2 := β2σ2. The approximation consists in assuming that the variabil-
ity of σ2i between companies (the parameter dispersion) can be well repre-
sented by considering it as included in the variance σ2ε of the errors terms ε̃i.
So the problem just reduces to testing the assumption, through the linear
regression (2.25), that the variance estimate function has a purely quadratic
expression, i.e. with no constant and no linear terms.

For the variance estimate one could consider an approach similar to the
“Standardised Method 1” proposed in QIS5 for the USPs for premium and
reserve risk, using the estimator:

V̂ari(Y ) = Xi
1

Ti − 1

Ti∑
t=1

Xt,i

(
Qt,i −Qi

)2
,

with:

Qt,i :=
Yt,i
Xt,i

e Qi :=

∑Ti
t=1 Yt,i∑Ti
t=1Xt,i

.

However, the most consistent approach would be, where possible, to esti-
mate the variance using the method of which we are currently testing the
hypotheses5. This is equivalent to pose:

V̂ari(Y ) = σ̂2i (δ̂i, γ̂i) · Y
2
i , (2.26)

where σ̂2i is the estimate of the unit standard deviation of company i pro-
vided by Model M1, which shall be obtained by deriving the parameters δ̂i
and γ̂i after the minimisation of the corresponding criterion function.

Whatever is the variance estimator used, it is natural to apply the usual
linear regression techniques to estimate – and validate – model (2.25), as
discussed for testing the hypothesis on the mean. It cannot be excluded,
however, that the parameter dispersion within the theoretical model can
produce identification problems. It could be appropriate to exclude some
outliers in the sample of the variance estimates.

2.a.3 An example of a market-wide test of M1V hypothesis

As an illustrative example, we performed a test on the variance hypothe-
sis M1V for premium risk within the MTL segment based on the Italian

5This is the approach followed by the JWG to analyze the adequacy to market data of
the different models used for the calibration (see [9], in particular par. 91, footnote 24).

15



market data6. The information used is publicly available on ANIA web-
site www.infobila.it. We considered the time series from 1999 to 2013 of
the earned premiums (variable X) and the corresponding ultimate cost es-
timate after the first development year (variable Y ), observed on a selected
sample of N = 50 companies operating within that market segment7. For
each company i the parameters estimates δ̂i and γ̂i have been computed that
minimise the function σi(δi, γi), and the corresponding variance estimates
(2.26) according to Model M1 have been obtained.

In a first run, the model (2.25) has been estimated on the sample of
50 companies, including an intercept. In the analysis of the results it is
of primary importance the significance and the fitting ability of the model.
One finds that the F statistic has a very high significance, which means that
the model explains a significant portion of data variability; this outcome is
confirmed by the high value of the R2 and the R2 adjusted by the degrees
of freedom.

F -statistic p-value R2 adj. R2

737.89 < 0.0001 0.9389 0.9377

These results should be sufficient, by themselves, to support the acceptance
of the M1V hypothesis on the used data. By performing the significance
analysis also on the individual parameters we find that, consistently with
the model assumptions, the intercept is not significantly different from zero

and the coefficient of X
2

is different from zero at a high significance level.

parameter estimate std. error t-statistic p-value

β0 −78.11673 238.06326 −0.33 0.7442

β2 0.00467 0.00017 27.16 < 0.0001

With a model-selection approach, we have estimated on the same 50
companies the reduced model with no intercept, obtaining the following
results.

F -statistic p-value R2 adj. R2

841.59 < 0.0001 0.9450 0.9439

One can observe that the general significance and the fitting ability of the
model further improve (both the F statistic and the R2 are higher) and the

6It should be observed that a test of M1V hypothesis extended to the whole market is
not necessarily more informative than a similar analysis made on a market segment. For
example, if the market would be composed of two segments described by the same model
but with different parameter values, the hypothesis testing would be more reliable if it
was made only on the segment to which the considered company belongs.

7Companies with less than 5 observations and companies with σ̂ ≥ 1 have been ex-
cluded.
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parameter estimate std. error t-statistic p-value

β2 0.00465 0.00016040 29.01 < 0.0001

slope coefficient β2 is confirmed being different from zero with a high level of
significance. We can conclude that the appropriateness of M1V hypothesis
on the sample is largely and significatively confirmed.

2.a.4 Hypothesis on the distribution

We aim to test the M1D hypothesis, i.e. the assumption that the loga-
rithms {lnYt; t = 1, 2, . . . , T} of the observations Yt are a sample coming
from a normal distribution. It should be emphasised that, given the small
sample size which is typical in these applications, the normality tests can
be problematic, since they can result of low significance or of low power
(where “power” denotes the ability to avoid Type II errors, i.e. acceptance
of normality when it is actually false). Problems in performing tests on the
distributions have also been reported by the JWG in its calibration study8.

For the statistical testing of the M1D hypothesis both “algorithmic” and
graphical methods can be considered.

Algorithmic Methods

Normality tests of algorithmic type assume the normality of data as the null
hypothesis (H0), and define a test statistic which should allow to distinguish
the null from the alternative hypothesis (H1), i.e. non-normality. In this ap-
proach, a low level of the p-value9 is, by definition, associated to a low level
of confidence in normality of data. According to a common practice, p-value
levels below 1% strongly support H1 (non-normality), levels above 10% in-
dicate that data do not provide support to H1, while levels between 1% and
10% show an uncertainty condition. Therefore, as a preliminary remark,
it should be emphasised that any normality test based on the p-value, no
matter how large the data sample is, can possibly provide conclusive infor-
mation for rejecting H0, but can also result to be inconclusive as concerning
the acceptance of H0 (simply providing, in this case, no contrary evidence).
This issue is well explained in [17]. The above mentioned difficulties faced
by the JWG can be put in relation with this point, also.

Among the several logarithmic tests of normality presented in the liter-
ature, the following are the most commonly used.

8The empirical findings on this issue [i.e.: discriminating between the normal and log-
normal distribution] – for example, with regard to the various goodness-of-fit diagnostics
and PP-plots – were also inconclusive. [9], par. 102

9Intuitively, the p-value is the probability of obtaining the data actually observed (and
then obtaining for the test statistic the value actually computed or a more extreme value)
when the null hypothesis H0 is actually true. Therefore a small p-value suggests to reject
H0, but a large p-value does not exclude that the alternative hypothesis H1 is also true.
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• Kolmogorov-Smirnov test. This is a non-parametric test based on the
Empirical Distribution Function (EDF). Given a sample {X1, X2, . . . , Xn}
of n independent and identically distributed (i.i.d.) observations of the
random variable X, the EDF of X is defined as:

Fn(x) =
1

n

n∑
i=1

I{Xi≤x} , x ∈ R .

Given a theoretical continuous distribution function F (x) which is as-
sumed as the true distribution (in this case the normal distribution), the
goodness-of-fit of the sample with respect to F (x) is defined introduc-
ing a distance measure between the empirical distribution function Fn(x)
and the theoretical distribution function. In the Kolmorogov-Smirnov
test (KS) [22], the distance measure is defined as the supremum D of the
difference, in absolute value, between Fn(x) and F (x):

D = sup
x∈R
|Fn(x)− F (x)| .

Obviously, the lower the value of D the stronger the support provided
to H0 hypothesis. Numerically, the test consists in comparing

√
nD

with the corresponding Kolmogorov critical value Kα, with Kα such that
P(K ≤ Kα) = 1−α, where K is the Kolmogorov random variable and α is
the chosen significance level. As for all tests based on a distance measure,
the p-value is the probability that D is greater than the observed value.
In practice, the KS statistic requires a relatively large number of observa-
tion in order that the null hypothesis is properly rejected.

• Cramer-von Mises test. The Cramer-von Mises test (CvM) is also
based on the EDF, however it belongs to the class of Quadratic EDF
(QEDF) statistics. These tests use a quadratic distance measure, defined
as:

D2 = nω2 , with ω2 =

∫ ∞
−∞

(
Fn(x)− F (x)

)2
w(x)dF (x),

where w(x) is a fixed weight function. Compared to the KS tests, the
QEDF type tests take better into account the whole data in the sense
of the sum of the variations, while the KS test is more sensitive to the
aberrance in the sample.
The CvM tests [3] [30] uses D2 with w(x) ≡ 1:

T 2 = n

∫ ∞
−∞

(
Fn(x)− F (x)

)2
dF (x) .

It consists in comparing T 2 with the corresponding tabulated value, at a
given level of significance α. In normality tests, CvM should display high
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power, being one of the most efficient EDF tests in detecting departures
from the null hypothesis (low rate of Type II errors). The use of this test
is usually recommended for samples with n < 25 (while it can fail with
very large samples).

• Anderson-Darling test. The Anderson Darling test (AD) [1] is also in
the QEFD class, with the weight function given by:

w(x) = 1/[F (x) (1− F (x))],

then the test statistic is:

A2 = n

∫ ∞
−∞

(
Fn(x)− F (x)

)2
F (x) (1− F (x))

dF (x) .

The properties are similar to CvM, with the only difference that the A2

statistic gives more weight to the tails.

• Shapiro-Wilk test. The Shapiro-Wilk normality test (SW) [26] com-
pares a variance estimator based on the optimal linear combination of the
order statistics of a normal variable and the usual sample variance. The
test statistic W is the ratio between these two estimators and its value
can range between 0 and 1. The normality hypothesis is rejected for low
values of W and not rejected for values close to 1. Therefore, the p-value
is the probability that W is lower than the observed value. It should be
pointed out, however, that the distribution of W is highly asymmetric,
so much that W values close to 0.9 can be considered to be low in the
normality analysis.
For interpreting the results, it can be useful to observe that the W statistic
can be interpreted as the square of the correlation coefficient in a QQ-plot.
The SW test is often presented as one of the most powerful test for nor-
mality in small samples. It could be unreliable if there are many repeated
values in the data (tied observations).

• Jarque-Bera test. This test belongs to the omnibus moments class,
as it assesses simultaneously whether two sample moments, the skewness
and kurtosis, are consistent with the normality assumption.
The Jarque-Bera test statistic (JB) [16] has the following expression:

JB =
T

24

(
4 b+ (k − 3)2

)
,

where
√
b and k are, respectively, the sample skewness and kurtosis. For

normal data the JB statistic asymptotically has a chi-squared distribu-
tion with two degrees of freedom.
In the JB test, H0 is a joint hypothesis of both the skewness and the
excess kurtosis being zero. This hypothesis is rejected for high JB values.

19



Therefore the p-value is the probability of JB being higher than the ob-
served value.
The JB test has been used by the JWG to identify outliers within the
standard deviation estimates obtained on a relatively large sample of com-
panies. The test, however, is not appropriate for small samples, since the
chi-squared approximation is overly sensitive10 and, moreover, the distri-
bution of p-values becomes a right-skewed uni-modal distribution. These
behaviours tend to produce a high level of Type I errors (the null hypothe-
sis is improperly rejected). For all the above mentioned reasons, it doesn’t
seem appropriate to use the JB test for the problem we are considering
here.

Graphical Methods

• Histogram. This is the usual bar-chart that illustrates the relative fre-
quency of observations falling into the k-th interval of a “grid” properly
defined on the x axis. Given the limited number of observations available
in USP computations, generally this approach is of little practical use in
checking for normality of data.

• PP-plot. Given a sample {X1, X2, . . . , Xn} of n independent and equally
distributed observations of the random variable X, let us derive the or-
dered sample {Xn,n ≤ Xn−1,n ≤ · · · ≤ X1,n}. Since Xk,n ≤ x if and only
if
∑n

i=1 I{Xi>x} < k, on the ordered sample the EDF takes on the values:

Fn(Xk,n) =
n− k + 1

n
, k = 1, 2, . . . , n .

The probability plot (PP-Plot) is the two-dimensional graph:{(
F (Xk,n) ,

n− k + 1

n+ 1

)
, k = 1, 2, . . . , n

}
,

built on the ordered sample {Xn,n ≤ Xn−1,n ≤ · · · ≤ X1,n} of the n (i.i.d.)
observations of X.
By Glivenko-Cantelli theorem, if X has distribution function F the plot
should be approximately linear.

• QQ-plot. The quantile plot (QQ-plot) is the same graph referred to
quantiles: {(

Xk,n , F
(−1)

(
n− k + bk
n+ ak

))
, k = 1, 2, . . . , n

}
,

10The problem is mentioned also by the JWG. In [9], par. 9.3 it is said: Care should be
exercised with this test statistic as the asymptotic distribution only holds for fairly large
(n� 100) numbers of observations n.
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with ak and bk appropriately chosen to take into account the empiric
discontinuity of the distribution (see e.g. [10]). Typical choices are ak ≡
bk ≡ 1, or ak ≡ 0 and bk ≡ 0.5. Also in this case, if X ∼ F the plot should
be approximately linear.

2.a.5 Comparing the testing methods

We performed a comparative analysis through a simulation exercise with the
aim to compare the discriminant ability of the normality tests previously
considered, with a specific attention to small samples.

Organization of the simulation exercise

The tests KS, CvM, AD, SW and JB have been applied to 1000 samples of
T observations (with T = 6, 10, 15, 100) drawn by simulation from:
· a normal distribution,
· a lognormal distribution,
· a Weibull distribution with shape parameter τ > 1, and
· a Pareto Type II distribution.
For all distributions we set a mean m = 100 and for the normal distribution
we chose a variation coefficient κ = 0.1 (which is a typical figure for the unit
standard deviations prescribed in the standard formula). It follows that the
quantile of the normal at probability level p = 99.5% is Qp = 125.758. The
parameters of the other three distributions have been chosen in order to have
the same value for Qp (therefore, the same value for the unexpected loss)11.
As a result, the Weibull distribution has shape parameter τ = 9.4315 and
scale parameter θ = 105.3799, that imply a standard deviation σ = 12.71;
then the dispersion is higher than in the normal distribution (where σ = 10),
in line with the fact that for τ > 1 the Weibull distribution is more light-
tailed. The lognormal and the Pareto distribution have a lower dispersion
compared to the normal, since both the distributions, in particular Pareto,

11The Weibull distribution function has the form:

F (x) = 1− e−(x/θ)τ , x > 0 ,

with θ, τ > 0. The mean and the p-quantile are:

µ = θ Γ(1 + 1/τ), Qp = θ [− ln(1− p)]1/τ .

For the Pareto Type II distribution (also referred to as Lomax distribution) one has:

F (x) = 1−
(

θ

θ + x

)α
, x > 0 ,

with α, θ > 0. The mean and the p-quantile are given by:

µ =
θ

α− 1
, Qp = θ [(1− p)−1/α − 1].

For the properties of the Weibull and Pareto Type II distribution see e.g. [17].
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are more heavy-tailed. In particular, for the lognormal the mean and the
standard deviation (of lnY ) are µ = 4.60 and ω = 0.09058, which implies a
standard deviation σ = 9.07. For the Pareto distribution, where the kurtosis
is much higher, one has a shape parameter α = 1.0065 and a scale parameter
θ = 0.6542 (for these values the variance does not exist).

In summary, besides data generated from a normal distribution (which
corresponds to the null hypothesis), we have considered three alternative
hypotheses, one corresponding to a lower kurtosis (Weibull), and two (log-
normal and Pareto) corresponding to a higher kurtosis, one of which (Pareto)
has extreme behaviour. We imposed to all the distributions the same value
of the unexpected loss in order to make the four alternatives equivalent from
the point of view of the implied SCR, as defined in Solvency II.

Simulations results

Algorithmic methods. The 1000 values of each test statistic and the corre-
sponding p-values, computed in each simulation on the samples with T =
6, 10, 15, 100 observations, have been saved and compared within each other.
An exhaustive analysis of the results can be obtained by a systematic com-
parison of the empirical distributions thus derived. We report here the
results of a reduced analysis, which only takes into account the mean, the
mode and the median of the distributions as well as the number of rejections
of the null hypothesis.

In Tables 1a and 1b we reported, for all the sample sizes considered, the
simulation results of the five normality tests previously illustrated. Table 1a
refers to the Kolmogorov-Smirnov, the Cramer-von Mises and the Anderson-
Darling test, which are based on distance measures; Table 1b concerns the
Shapiro-Wilk and the Jarque-Bera test. In both tables the following figures
are reported: the mean of the test statistic, the mean of p-value, the mode12

of p-value, the median of p-value and the rejection rate of H0 at level α,
that is the percentage number rα of cases, out of the 1000 simulated cases,
where the p-value was lower than the significance level α; the levels α =
1%, 5%, 10% have been considered. In the normal case the rejection rate rα
provides the rate of Type I errors (H0 is rejected when it is in fact true);
obviously one requires that the value of rα is as low as possible. In the three
cases of non-normality, instead, rα should be as high as possible, since it
provides a measure of the power of the test (i.e. the ability of rejecting the
H0 hypothesis when it is false); it is generally accepted that on non-normal
data rα should be 80% or greater. The complement to unity of rα for the
non-normal data provides the Type II error rate (failure to reject H0 when
it is false).

The figures reported in the tables show that the Type I error rate is
appropriately low for all the five tests and for all the values of sample size

12The mode has been computed by rounding to the third decimal place the simulated
p-value. In the case of multiple values the minimum value has been taken.
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T . In detail, the value of rα for normal data is higher in the SW and JB
tests than in the three tests based on distance measures, and among the
latter KS, in turn, seems to provide lower values.

If one looks, however, at the H0 rejection rates for the non-normal data,
for all the tests one observes inappropriately low rα values both on the log-
normal and the Weibull data, for all three levels of α. Sufficiently high levels
of the rejection rate can be found only for data with Pareto distribution,
but also in this case rα values greater than 80% can be observed only for
high values of T and α.

All the test statistics have the theoretically expected behavior: as data
departs from normality, one observes a decreasing trend for the SW test
(consistently with the interpretation of the W statistic as the squared corre-
lation coefficient in the QQ-plot) and an increasing trend for the other tests.
However, also for the sample with T = 100 all the tests almost systemat-
ically fails to detect non-normality for distributions which are not heavily
different (as the Pareto) from a bell-shaped distribution. By and large, also
taking into account mean, mode and median of the p-values, one can con-
clude perhaps that SW and AD tests are slightly more powerful; there is,
however, a high probability of Type II errors for all the methods considered.
Among the five cases considered the JB test seems the worst performing,
probably because of the small size of the samples considered. The indication
is then confirmed of not using this method for this kind of applications.

è [ Graphical methods. In order to compare the performances also of normal-
ity tests of graphic type, for each value of T the sample has ben selected, out
of the 1000 simulated, where the p-value for a given test statistic is closest
to the value of the mode. The Shapiro-Wilk statistic has been used. For
each of these samples a PP-plot and a QQ-plot has been produced; these
plots are reported in Tables 2 and 3. With the exception of the extreme
case of Pareto data, all these graphical tests confirm the difficulty in cor-
rectly identifying the normal data for small samples. With this data it is
hard to discriminate using a PP-plot between the normal and the lognormal
hypothesis also on the sample with 100 observations.

2.a.6 Appropriateness of maximum likelihood method

As concerning the ML property, i.e. the appropriateness of the maximum
likelihood method used for the estimate (Section 2.a), this is testified by the
convergence properties of the minimisation procedure, which is required to
univocally identify a minimum of the criterion function in the optimisation
interval D. The uniqueness of the minimum provided by the procedure can
be tested by an empirical illustration of the criterion function `(δ, γ) on a
sufficiently large grid of δ and γ values.

In order to define the grid the values γmin and γmax have to be chosen.
Recalling the definition γ = ln(σ/β) and since β = E(Y/X) (expected loss
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Figura 1: pp-plot

1

Table 2. PP-plots on samples with modal p-value (according to
Shapiro-Wilk)
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Figura 1: qq-plot

1

Table 3. QQ-plots on samples with modal p-value (according to
Shapiro-Wilk)
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ratio, expected run-off ratio) one can assume β ≈ 1 and σ ∈ [0.005, 1], hence:

γmin = ln(0.005) = −5.30 , γmax = ln(1) = 0 .

So the domain D is restricted to the domain:

D∗ = {0 ≤ δ ≤ 1, γmin ≤ γ ≤ γmax},

with the assumption that values of the criterion function outside this interval
are irrelevant for the analysis. A three-dimensional graph on D∗ should
show the regularity of the function and the existence of a global minimum
(possibly on the boundary of D∗) clearly identified by the minimisation
procedure. As an example, a typical “volatility surface” σ(δ, γ) is illustrated
in Figure 1.

Figure 1. The surface σ(δ, γ) on the domain D∗

1.00

0.67

0.33

0.00

delta
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-3.53-1.770.00
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-80

51

183

314

2.b Hypothesis testing for Model M2

Also for Model M2 it is required by the Delegated Acts to verify the con-
sistency between the underlying assumptions and the data. Specifically, a
statistical testing is required for the assumptions introduced in Section 1.b:

M2I – Independence hypothesis: independence between cumulated (and in-
cremental) payments of different accident years (AY);

M2M – Hypothesis on the conditional mean: for any AY and in any develop-
ment year (DY) of any given AY, proportionality of the expected cumulative
payments of next DY with respect to the cumulative payments of current
DY;
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M2V – Hypothesis on the conditional variance: for any AY and in any DY
of any given AY, proportionality of the variance of cumulative payments of
next DY with respect to the cumulative payments of current DY.

It is useful to rewrite hypotheses M2M and M2V in a unified form. Let
us denote by:

B0 := {C0,0, C0,1, . . . , C0,I , } ,
the set of all payments made in the first development year. Then the as-
sumptions M2M and M2V can be unified as:

M2MV - Time series hypothesis. There exists constants fj > 0 and σj > 0
and random variables εi,j such that for 1 ≤ j ≤ J and 0 ≤ i ≤ I:

Ci,j = fj−1Ci,j−1 + σj−1
√
Ci,j−1 εi,j , (2.27)

where εi,j are error terms identically distributed and conditionally indepen-
dent, given B0, with mean E(εi,j |B0) = 0 and variance Var(εi,j |B0) = 1.

This formulation has been proposed in 2006 by Buchwalder, Bühlmann,
Merz and Wüthrich [4] as a distributional extension of Mack’s DFCL model
and defines the so-called Time Series Chain Ladder (TSCL) model. Ex-
pression (2.27) allows, among other things, a simulative approach to the
model13.

2.b.1 Hypothesis on the conditional mean and variance

For any fixed j = 0, 1, . . . , J − 1, expression (2.27) defines a linear regres-
sion model for the observations of a pair of consecutive development years.
Precisely, one has J weighted linear regressions of the type:

yi = β xi +
σ
√
wi
εi , i = 0, 1, . . . , I,

with xi = Ci,j−1, yi = Ci,j and wi = 1/xi = 1/Ci,j−1. As it is well-known,
the β coefficient in this regression will be estimated by weighted least squares
as:

β̂ =

∑n
i=1 wi xi yi∑n
i=1 wi x

2
i

;

as one immediately checks, this expression coincides with (1.16), which pro-
vides the chain ladder estimator f̂j . Moreover, the variance of the error
terms is estimated as:

σ̂2 =
SSE

n− 1
,

13By a strictly theoretical point of view, the recursive relation defined by the time
series assumption could produce negative values for the cumulative payments Ci,j−1. This
“negativity problem”, just extensively discussed in the Comments to the original paper,
could be avoided by reformulating the properties of the error terms εi,j conditionally on the
value taken by Ci,j−1. This would lead to a model with a much more complex dependence
structure. Since the negativity problem is usually irrelevant in practical applications, in
the TSCL one takes the pragmatic position of ignoring this theoretical inconsistency.
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where the SSE has the form:

SSE :=
n∑
i=1

wi
(
yi − xi β̂

)2
;

this expression coincides in turn with the estimator σ̂2j of DFCL given by
(1.17).

The important point here is that, in order to assess the significance of
these estimates and the consistency of data to the model, one can use the tra-
ditional tests for the hypotheses and for the goodness-of-fit, thus obtaining
a test for M2MV, i.e. both for the hypothesis M2M on the conditional mean
and for the hypothesis M2V on the conditional variance. Therefore one will
just have to perform (with the proper changes to account for homoscedas-
ticity) the F test and/or the t test, with the corresponding p-value, and
compute measures of fit (SSE) and of explained variance (R2). If a prelim-
inary analysis is performed considering a model with intercept, this should
result significantly not different from zero. A graphical illustration could be
added.

Remark. All these measures of significance and goodness-of-fit are included
in the test plan provided by the procedure Explorer c©, which is aimed at
performing an exploratory analysis of data in connection with a variety of
loss reserving models. One of the most early works on the goodness-of-
fit methods applied to loss reserving models has been proposed in 1998 by
Venter [27]; for further developments see e.g. [7].

Usually, data will not be sufficient to perform all the J regressions which
are theoretically required. In fact the number of observations (accident
years) available for estimating regression j is I−j, therefore decreases when
j increases. For example, if one decides that at least 5 observations are
needed in order that a regression is considered significant, the analysis for
the last development year will be performed only if a trapezoid of paid losses
with I ≥ J + 4 is available. In the usual case of a triangle (I = J), only the
first I + 1− 5 regressions could be considered.

2.b.2 Independence hypothesis. Test on time series residuals

One of the methods available for testing independence between different
accident years consists in testing the independence of the residuals derived
by the time series equation (2.27). The basic idea, also proposed by Merz
and Wüthrich [31], is to verify through a linear regression that there are not
trends over accident years in these residuals.

Considering the individual development factors Fi,j , expression (2.27)
can be written:

Fi,j :=
Ci,j
Ci,j−1

= fj−1 +
σj−1√
Ci,j−1

εi,j , (2.28)
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where εi,j are, by assumption, identically distributed and conditionally in-
dependent, given B0, with zero conditional mean zero and unit conditional
variance. Hence, if also the assumption M2I of independence between acci-
dent years holds, the random variables:

εi,j :=
Fi,j−1 − fj−1√
σ2j−1C

−1
i,j−1

,

are independent. Then, in order to verify hypothesis M2I one can test the
independence of the εi,j on the observed trapezoid, that is the independence
of the residuals:

εi,j =
Fi,j−1 − fj−1√
σ2j−1C

−1
i,j−1

,

j = 1, 2, . . . , J, i = 0, 1, . . . , I − j .

(2.29)

The number of these residuals is nTS = J(I − J) + J(J + 1)/2.
However the residuals given by (2.29) are not observable, since the pa-

rameters fj e σj are not known. Replacing in expression (2.29) the unknown
parameters by the parameter estimates obtained by (1.16) and (1.17) one
then obtains the nTS observable residuals:

ε̂TSi,j =
Fi,j−1 − f̂j−1√
σ̂2j−1C

−1
i,j−1

,

j = 1, 2, . . . , J, i = 0, 1, . . . , I − j ,

(2.30)

on which an independence test can be actually performed.
The independence between residuals of different accident years for the

same development year has just been implicitly tested in the regression
analysis for testing the M2MV hypothesis. It is required more here, since
we need to explicitly test the independence between residuals of different
accident years and of any development year. This independence test can be
made through a graphical analysis. If the independence assumption holds,
we should not observe any trend over the accident years in the residual
plot. The absence of trends can also be checked by a regression analysis,
performed by development year14 or, more simply, on the whole sample of
residuals.

Remark. Expression (2.30) can also take the form:

ε̂TSi,j =
Ci,j − ĈTSi,j−1
σ̂j−1

√
Ci,j−1

,

j = 1, 2, . . . , J, i = 0, 1, . . . , I − j ,
(2.31)

14In this case the remarks still hold on the minimum number of observations required
for testing the M2MV hypothesis: the residual analysis shall be performed only for the
development years having a sufficient number of observations.
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where:
ĈTSi,j−1 := f̂j−1Ci,j−1 ,

can be interpreted as the fitted value of the TSCL model.

Problems of spurious dependence

It is important to observe that the results of the independence tests on
the residuals could be distorted by spurious dependence effects, induced by
the use of the chain ladder estimators f̂j . In particular, if one considers

the “column” linear combinations
∑I−j

i=0

√
Ci,j−1 ε̂TSi,j , one finds that the

following relations hold:

I−j∑
i=0

√
Ci,j−1 ε̂

TS
i,j = 0 , j = 1, 2, . . . , J . (2.32)

In fact, using expression (2.31) for the time series residuals, one has, for
j = 1, 2, . . . , J :

I−j∑
i=0

√
Ci,j−1 ε̂

TS
i,j =

I−j∑
i=0

√
Ci,j−1

(
Ci,j − f̂j−1Ci,j−1
σ̂j−1

√
Ci,j−1

)

=
1

σ̂j−1

I−j∑
i=0

(
Ci,j − f̂j−1Ci,j−1

)

=
1

σ̂j−1

(
I−j∑
i=0

Ci,j − f̂j−1
I−j∑
i=0

Ci,j−1

)
= 0 ,

where the last equality follows from (1.16).
Expressions (2.32) show that there exist negative correlations between

the observable time series residuals (i.e. calculated with the estimated pa-
rameters). In particular, for j = I − 1 one finds that ε̂TS0,I−1 and ε̂TS1,I−1 are
negatively perfectly correlated.

An additional issue, however less important, is that expressions (2.32)
imply the property:

J∑
j=1

I−j∑
i=0

√
Ci,j−1 ε̂

TS
i,j = 0 , (2.33)

which is incompatible with the property:

1

nTS

J∑
j=1

I−j∑
i=0

ε̂TSi,j = 0 . (2.34)

Then the distribution of the observed residuals has not zero mean.

32



Remark. Properties (2.32) have just been derived by Merz and Wüthrich
in [31], Section 7.4, together with the variance properties:

Var(ε̂TSi,j |Bj−1) = 1− Ci,j−1∑I−j
i=0 Ci,j−1

< 1 , (2.35)

(with Bk := {Ci,j ; i + j ≤ I, 0 ≤ j ≤ k}), which imply that the variance
of the empirical distribution of residuals is lower than the unit theoretical
value. All these properties of the empirical residuals have been used by the
authors in connection with the simulation of the TSCL model by parametric
bootstrap.

2.b.3 Independence hypothesis. Test on Pearson residuals

An alternative to using time series residuals is to consider (unadjusted)
Pearson residuals15:

εPi,j =
Xi,j −Xfit

i,j√
Xfit
i,j

,

j = 0, 1, . . . , J, i = 0, 1, . . . , I − j ,

(2.36)

where Xfit
i,j are the fitted incremental payments obtained by backcasting

from the last observed diagonal. Precisely, one defines the fitted cumulative
payments by the backward recursive procedure:

Cfiti,j =
Ci,I−j

fjfj+1 · · · fI−j−1
, (2.37)

and then derives as usual, by differencing, the corresponding incremental
payments Xfit

i,j . Pearson residuals εPi,j are widely used in the generalized
linear model theory (GLM) and for this reason they are usually chosen as
“noise generators” in the bootstrap simulation of the stochastic chain ladder
model, when this is specified in the form of an Over Dispersed Poisson model
(ODP). It can be immediately checked, in fact, that the ODP model can be
reformulated as a GLM model (see e.g. [12], [11], [5]). In this theoretical
framework, the Pearson residuals εPi,j have zero mean and constant variance
(equal to the ODP overdispersion parameter φ).

As pointed out by Verral and England in [28] and [29], the backward fit-
ted values given by (2.37) are the most appropriate for defining the residuals
of a recursive model like the chain ladder, and they have better theoretical

15The adjusted (i.e. corrected for the number of degrees of freedom) Pearson residu-
als are obtained by multiplying the unadjusted residuals by

√
nTS/(nTS − p), where p

is the number of parameters. This adjustment is irrelevant for the purpose of testing
independence.
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properties then the fitted values of the type CTSi,j = fj−1Ci,j−1 used for the
time series residuals.

The number of the Pearson residuals is nP = J(I−J)+(J+1)(J+2)/2,
which is greater than the number of the time series residuals. Moreover,
while the time series residuals are adimensional variables (they are pure
numbers), Pearson residuals have dimension euro1/2 (the squared residuals
have monetary dimension) and then take on numerical values on a different
scale.

Obviously, also the residuals (2.36) are not observable and their observ-
able version is obtained by the estimates:

ε̂Pi,j =
Xi,j − X̂fit

i,j√
X̂fit
i,j

,

j = 0, 1, . . . , J, i = 0, 1, . . . , I − j ,

(2.38)

where the estimate of the fitted incremental payments X̂fit
i,j is obtained by

(2.37) replacing the unknown development factors fj by the corresponding

chain ladder estimators f̂j . Therefore one can suppose that also the observed
Pearson residuals ε̂Pi,j contain spurious correlation induced by the use of these
estimators, even though one could argue that the use of a product instead
of a single estimator should induce more weak correlations. For the Pearson
residuals, however, the theoretical analysis of these effects is more difficult
than for the time series residuals and the performances of the two methods
could be better compared using empirical approaches. A useful comparison
can be obtained by simulation, generating a sample of “pseudotrapezoids”
of independent payments and analyzing the two types of residuals estimated
on each pseudotrapezoid.
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Part II

Application to entity-specific data

3 Premium Risk – Model M1

3.a Specification of the input data

In the Premium Risk submodule the undertaking-specific unit standard de-
viation for each segment (a specified group of lines of business, as defined in
[14]) can be estimated only using Model M1, which is summarised in Section
1.a. In this application of the model the data used consists of:

· Yt: the aggregated losses of accounting year t, with t = 1, .., T and
T ≥ 5, that is the sum of the payments and the best estimate
provisions made at the end of year t for claims occurred and
reported in the same year;

· Xt: the earned premiums of accounting year t, with t = 1, .., T and
T ≥ 5.

In general, available data concerns different types of insurance activity
(direct business, accepted business, direct plus accepted business), net or
gross of recoveries from policyholders (deductibles, salvages, subrogations).
In this application it seems appropriate to use data concerning direct plus
accepted business net of recoveries.

As concerning outward reinsurance, data used will be net or gross of
reinsurance recoverables according to whether the market-wide adjustment
factor NPMW for non-proportional reinsurance([13], art. 117(3))16 is used
or not.

It is required that data are representative for the premium risk which
the company will face in the twelve month following the valuation date (the
“next year”, i.e. year t = T + 1).

The claims cost Yt is given by:

Yt = Pt +Rt − (P rt +Rrt )−∆r
t ,

where (in brackets it is reported the entry of the IVASS supervisory form –
modulo di vigilanza – n.17 relative to, e.g., the gross direct business):

16As previously pointed out, we do not consider in this paper the entity-specific adjust-
ment factor NPUSP ([13], art. 218(1.iii)).
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· Pt: paid amounts for claims occurred in accounting year t (v10);
· Rt: claims provision at the end of accounting year t for claims oc-

curred in the same year (v13);
· P rt : amounts recovered in accounting year t for deductibles, sal-

vages and subrogations from policyholders and third parties
for claims occurred in the same year (v14);

· Rrt : amounts to be recovered for deductibles, salvages and subro-
gations from policyholders and third parties at the end of ac-
counting year t for claims occurred in the same year (v15);

· ∆r
t : balance of portfolio movements for claims occurred in the same

year (v17).

Remark. For the MTL segment the amounts Pt includes the contributions
to F.G.V.S. fund (v301).

The claims cost can be adjusted by excluding catastrophe claims cost to the
extent that the risk of such claims is just considered in the subforms specific
for that.

The earned premiums Xt are defined by:

Xt = EPt = Rpt−1 +WPt −Rpt + ∆p
t + ∆cp

t ,

where:

· Rpt−1: premium provision at the end of previous accounting year t− 1
(v01);

· WPt: written premiums in accounting year t (v03);
· Rpt : premium provision at the end of accounting year t (v04);
· ∆p

t : balance of portfolio movements for premiums received in ac-
counting year t (v05);

· ∆cp
t : balance of net exchange differences deriving from the updating

of foreign currency provisions in accounting year t (v02).

3.b Application of the method

The undertaking-specific unit standard deviation for segment s according to
Method 1 is given by:

σ(prem,s,USP ) = c · σ̂(δ̂, γ̂) ·
√
T + 1

T − 1
+ (1− c) · σ(prem,s),

where:

· T is the length in years of the yearly time series;

· c is the credibility factor;
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· σ(prem,s) is the market-wide level of the unit standard deviation, net of
reinsurance, prescribed by EIOPA; this coefficient is obtained multiplying
by NPMW the gross standard deviation;

· σ̂(δ̂, γ̂) is the estimate of entity-specific unit standard deviation net of
reinsurance, provided by Model M1 and obtained by minimising the cri-
terion function `(δ̂, γ̂) (specified in Section 1.a) in the interval D = {δ̂ ∈
[0, 1], γ̂ ∈ R}. This net coefficient will be obtained either by performing
the estimation on net-of-reinsurance data, or by performing the estimation
on gross-of-reinsurance data and then multiplying the result by NPMW .

3.c On the minimisation technique

In order to identify δ̂ and γ̂ one can use either a minimisation routine (an
example is the E04JAF routine of the NAG Fortran Library), or a “grid
method”, or a combination of the two methods (using the minimum on the
grid for initialising the optimisation routine). However the grid computa-
tions are useful to analyze the regularity properties of the criterion function.

4 Reserve Risk – Model M1

4.a Specification of the input data

In the Reserve Risk – Method 1 the data used for estimating the undertaking-
specific unit standard deviation of a given segment consists of:

· Yt: the year-end obligations of accounting year t, with t = 1, .., T
and T ≥ 5, that is the sum of the payments and the best esti-
mate provisions made at the end of year t for claims occurred
in the previous years;

· Xt: the initial outstanding of accounting year t, with t = 1, .., T
and T ≥ 5, that is the best estimate provisions made at the
beginning of year t for claims occurred in the previous years.

It is required that data are representative for the reserve risk which the
company will face in the twelve month following the valuation date (i.e.
year t = T + 1).

Also in this case one could use data concerning direct plus accepted busi-
ness net of recoveries from policyholders. Since for reserve risk a gross-to-net
coefficient is not allowed, this data shall be net of reinsurance recoverables.

The obligations Yt estimated at the end of the accounting year t are
given by:

Yt = Pt +Rt − (P rt +Rrt ),

where (in brackets it is reported the entry for the gross direct business in
the IVASS supervisory form n.17):
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· Pt: paid amounts for claims occurred in years previous to account-
ing year t (v26);

· Rt: claims provision at the end of accounting year t for claims oc-
curred in years previous to accounting year t (v29);

· P rt : amounts recovered in accounting year t for deductibles, sal-
vages and subrogations from policyholders and third parties for
claims occurred in years previous to accounting year t (v32);

· Rrt : amounts to be recovered for deductibles, salvages and subroga-
tions from policyholders and third parties at the end of account-
ing year t for claims occurred in years previous to accounting
year t (v33).

The obligations Xt estimated at the beginning of the accounting year t
are defined as:

Xt = Rt−1 −Rrt−1 + ∆r
t + ∆cr

t ,

where:

· Rt−1: claims provision at the end of previous accounting year t − 1
(v21);

· Rrt−1: amounts to be recovered from policyholders and third parties
at the end of previous accounting year t− 1 (v31);

· ∆r
t : balance of portfolio movements for claims occurred in years

previous to accounting year t (v30);
· ∆cr

t : balance of net exchange differences deriving from the updat-
ing of foreign currency provisions for claims occurred in years
previous to accounting year t (v22).

Remark. In the supervisory forms it is considered the entry relative to the
balance of the amounts recovered and to be recovered, that is Rrt−1− (P rt +
Rrt ). The disaggregated data is present only for the gross direct business.

4.b Application of the method

The undertaking-specific standard deviation for segment s according to
Method 1 is given by:

σ(res,s,USP ) = c · σ̂(δ̂, γ̂) ·
√
T + 1

T − 1
+ (1− c) · σ(res,s),

where:

· T is the length in years of the yearly time series;

· c is the credibility factor;

· σ(res,s) is the market-wide level of the unit standard deviation prescribed
by EIOPA (which is just defined net of reinsurance);
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· σ̂(δ̂, γ̂) is the estimate of entity-specific unit standard deviation net of
reinsurance, provided by Model M1 and obtained by minimising the cri-
terion function `(δ̂, γ̂) in the interval D = {δ̂ ∈ [0, 1], γ̂ ∈ R} (using, as
pointed out, net-of-reinsurance data).

4.c On the minimisation technique

The same arguments apply as in section 3.c.

5 Reserve Risk – Model M2

5.a Specification of the input data

In the Reserve Risk – Method 2 the data used for estimating the undertaking-
specific unit standard deviation of a given segment consists of:

· Xi,j : amounts for claims occurred in accident year i, with i = 1, .., I
and I ≥ 5, and paid with j years of delay, with j = 1, .., J and
J ≤ I (paid trapezoid).

The paid amounts Xi,j are defined as:

Xi,j = Xgr
i,j −X

r
i,j ,

where:

· Xgr
i,j : amounts for claims occurred in accident year i and paid with j

years of delay, gross of recovered amounts;
· Xr

i,j : amounts recovered for deductibles, salvages and subrogations
from policyholders and third parties for claims occurred in ac-
cident year i and received with j years of delay.

As for Method 1, since a standard gross-to-net adjustment coefficient is
not allowed, this data shall be net of reinsurance. With Method 2, however,
this requirement is not easily to be fulfilled since “paid-losses triangles” are
usually available gross of reinsurance and a gross-to-net transformation can
be problematic. Delegated Acts, in D(2)(f) of Annex XVII, prescribe that
cumulative payments are adjusted for amounts recoverable from reinsur-
ance contracts which are consistent with the reinsurance contracts that are
in place to provide cover for the following twelve months. In many cases,
however, these adjustments require non-trivial interventions of interpreta-
tion and reconstruction which could lead to important distortions of the
intrinsic variability of data (that is just what should be estimated).
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5.b Application of the method

The undertaking-specific standard deviation for segment s, according to
Method 2, is given by:

σ(res,s,USP ) = c · Ĉv(res,s) + (1− c) · σ(res,s),

where:

· Ĉv(res,s) is the estimate of the variation coefficient of the Outstanding
Loss Liabilities (i.e. the entity-specific unit standard deviation with net-
of-reinsurance data) given by (1.19);

· c is the credibility factor;

· σ(res,s) is the market-wide level of the unit standard deviation prescribed
by EIOPA;

M̂SEP and R̂, the numerator and denominator, respectively, of Ĉv(res,s),
are derived by the closed-form expressions provided by Model M2 (Merz
and Wüthrich model).

Appendix

With regards to the test M1M on the mean and the test M1V on the variance
for Model M1 considered in Sections 2.a.1 and 2.a.2, it is worth to make some
additional remarks.

A Autocorrelation and heteroscedasticity

If one considers individual data of the type (2.20), that is the time series:

(X,Y ) = {(Xt, Yt); t = 1, 2, . . . , T},

since the (Xt, Yt) are repeated observations for the same company, autocor-
relation (or serial correlation) can be present in the data17. On the other
hand, if one considers market data of the type (2.21), i.e. the time series:

{(X,Y )i; i = 1, 2, . . . , N} = {(Xt,i, Yt,i); i = 1, 2, . . . , N, t = 1, 2, . . . , Ti},
17The simplest method for detecting the presence of serial correlation is the Durbin-

Watson test which provides an estimate of the first-order autocorrelation (i.e. correlation
between consecutive residuals). If the test statistic DW (which takes values between 0 and
4) is equal to 2 there are not indications of (first-order) autocorrelation. Values smaller
(larger) than 2 indicate positive (negative) autocorrelation. In this framework, a small
value of P(DW < dw) is associated to a high confidence level in positive correlation; a
small value of P(DW > dw) is associated to a high confidence level in negative correlation.
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as this data comes from different companies, the presence is possible of het-
eroscedasticity (that is the εi variables in (2.22) or in (2.23) do not have
the same variance). Thus, in general, the i.i.d. assumptions typical of the
standard regression model can fail to be verified. As concerning hypothesis
testing, this facts have the important consequence that the values obtained
for the estimation errors can be incorrect and then the significance assess-
ments for the parameter estimates can be not reliable. In particular, if
there is positive autocorrelation in the data, the regression residuals can
have lower dispersion which implies that we can underestimate the estima-
tion error and, consequently, we can overestimate the significance of the
corresponding parameter.

To overcome these difficulties the assessment of the estimation errors
must be properly corrected. This can be done by performing the estimates
in the form which is referred to as HAC (Heteroscedasticity and Autocorre-
lation Consistent), basically consisting in deriving estimates for the model
covariance matrix which include corrections for the effects of heteroscedas-
ticity and autocorrelation possibly present in the data. For a review on the
main HAC estimators one can see [25] and [2].

B Resampling of individual data

Another issue concerns the possibility of using individual (i.e. entity-specific)
data for the M1M and M1V tests. At least in principle, a possible way to
avoid the use of market data, particularly for the M1V test on the vari-
ance, consists in resampling the individual time series (X,Y ) by a bootstrap
procedure. If the observed time series:

(X,Y ) = {(Xt, Yt); t = 1, 2, . . . , T},

is a realization of i.i.d. variables, the standard (non-parametric) bootstrap
consists in producing a set of n “pseudoseries”:{

(X̃, Ỹ )κ; κ = 1, 2, . . . , n
}
, (B.39)

where the κ-th pseudoseries (X̃, Ỹ )κ is obtained by making T equiprobable
sampling with replacement from the original time series (X,Y ). Then one
can perform the M1M and M1V test on the n “observations” of the mean
and the variance, respectively, obtained by the pseudoseries (B.39).

In order that the bootstrap approach provides reliable results, however,
the statistical properties of the resampled series (B.39) must be as close
as possible to that of the original series. This can be a problem if there
is autocorrelation in the original data because in the standard bootstrap
approach the single observations, as being randomly sampled, are also ran-
domly re-sorted, which destroys the dependence structure possibly present
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in the data. A way to overcome this problem could be the use of block
bootstrap methods, where the pseudoseries (X̃, Ỹ )κ are obtained by resam-
pling blocks of consecutive observations, instead of single observations. This
should allow to capture, at least, the dependence structure internal to the
blocks.

Block bootstrap can be realized in many different ways. The most appro-
priate to the applications we are interested in here seems to be the Moving
Block Bootstrap (MBB), which uses overlapping blocks with fixed length
(see [18] [20]). Let l < T be the block lenght. On the original series one
defines, by a “moving-window” approach, T − l + 1 blocks:

{(X1, Y1), (X2, Y2), . . . , (Xl, Yl)},
{(X2, Y2), (X3, Y3), . . . , (Xl+1, Yl+1)},
. . .

{(XT−l+1, YT−l+1), (XT−l+2, YT−l+2), . . . , (XT , YT )} .

Then one performs the κ-th resampling by randomly drawing with replace-
ment from this set dT/le blocks18 and then collecting these blocks in the

order of drawing until a pseudoseries (X̃, Ỹ )κ with length T is obtained (a
final truncation is made when necessary).

The accuracy of the block bootstrap in replicating the data is sensitive
to the choice of the block length l, and so far generally accepted criteria are
not available for defining the optimal value of this parameter. As a rule of
thumb one could pose l ≈ T 1/3 but more sophisticated criteria are available,
that are chosen considering the properties assumed for the data and the
specific kind of application (see e.g. [19]). Given the short length T of the
time series available in USP applications, the choice of sensible values for
the block length is very limited. Practically, it seems reasonable to consider
for l the values 2, 3 or 4.

18We denote by dxe the minimum integer greater than or equal to x.
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