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Abstract

A critical problem in repeated measurement studies is the occurrence of non-

ignorable missing observations. A common approach to deal with this problem is

joint modeling the longitudinal and survival processes for each individual on the

basis of a random effect that is usually assumed to be time constant. We relax this

hypothesis by introducing time-varying subject-specific random effects that follow a

first-order autoregressive process, AR(1). We also adopt a generalized linear model

formulation to accommodate for different types of longitudinal response (i.e., con-

tinuous, binary, count) and we consider some extended cases, such as counts with

excess of zeros and multivariate outcomes at each time occasion. Estimation of the

parameters of the resulting joint model is based on maximization of the likelihood

computed by a recursion developed in the hidden Markov literature. The maximiza-

tion is performed on the basis of a quasi-Newton algorithm that also provides the

information matrix and then standard errors for the parameter estimates. The pro-

posed approach is illustrated through a Monte Carlo simulation study and through

the analysis of certain medical datasets.
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1 Introduction

A relevant problem in the analysis of longitudinal data is due to missing observations, in

particular when the missing mechanism is nonignorable (Missing Not At Random, MNAR;

Little and Rubin, 2002). In the statistical literature there exist different approaches to

model an MNAR mechanism. Among the best known, we recall the selection approach

(Diggle and Kenward, 1994), in which a model is specified for the marginal distribution

of the complete data and the conditional distribution of the missing indicators, given

these data. On the other hand, according to the pattern-mixture approach (Little, 1993),

a model is formulated for the marginal distribution of the missing indicators and the

conditional distribution of the complete data, given these indicators.

Here we focus on the shared-parameter approach for longitudinal data (Wu and Car-

roll, 1988; Wu and Bailey, 1988, 1989; Follmann and Wu, 1995; Hogan and Laird, 1997,

1998), which introduces random effects to capture the association between the sequence

of measurements and the missing process. An example of shared-parameter approach is

represented by Joint Models (JMs; Wulfsohn and Tsiatis, 1997; Henderson et al., 2000;

Tsiatis and Davidian, 2004; Rizopoulous, 2012).

In the standard formulation, a JM is characterized by a Generalized Linear Mixed

Model (GLMM; McCulloch and Searle, 2001) for the longitudinal process, with normally

distributed random effects, and by a proportional hazard Cox’s model (Cox, 2007) for the

survival process, where the risk of the event of interest at a given time depends on the

expected value of the longitudinal response at the same time. Such an event typically

corresponds to the death of a patient.

Potentially, the misspecification of the standard assumption of normality of the ran-

dom effects may be problematic in JMs, as these effects are used to capture both the

correlation between the repeated measurements in the longitudinal process and the asso-

ciation between the longitudinal and the survival process; besides, the nonrandom dropout

caused by the occurrence of the event complicates matters. However, simulation studies

found that parameter estimates and standard errors have a certain degree of robustness

with respect to misspecification (Rizopoulos et al., 2008; Huang et al., 2009). In this
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regard, Song et al. (2002) propose a flexible semi-parametric approach based on a class

of smooth densities for the random effects.

More problematic is the assumption of time constancy of the subject-specific random

effects. This assumption may be restrictive; relaxing such an assumption by allowing

subject-specific random effects to be time-varying amounts to introduce a latent process.

For instance, Henderson et al. (2000) and Xu and Zeger (2001) introduce a latent Gaus-

sian process shared by both the longitudinal and the survival processes, whereas Taylor

(1994), Lavalley and DeGruttula (1996), and Wang and Taylor (2001) specify an inte-

grated Ornstain-Uhlenbeck process, which is the continuous time analogue of a discrete-

time first-order autoregressive, AR(1), process. These approaches are limited to the case

of continuous longitudinal responses. The only exception is Xu and Zeger (2001) that for-

mulate a model in terms of a Generalized Linear Model (GLM), but the implementation

of the estimation algorithm is still limited to the case of a continuous response. Overall,

the implementation of the mentioned model formulations, in which repeated measurement

and time-to-event data are jointly modeled with time-varying random effects, may lead

to computational difficulties. Recent proposals that try to compound the computational

difficulties and the assumption of time-varying random effects come from Barrett et al.

(2015) and Bartolucci and Farcomeni (2015), which are illustrated in more detail in the

following.

Barrett et al. (2015) propose an approach based on the discretization of the time-to-

event measurements, which can be made arbitrarily fine, so as to reach a good compromise

between a feasible computational effort and a good approximation of its continuous time

limit. For the survival process, Barrett et al. (2015) adopt a sequential probit approach,

instead of a Cox’s model, so as to model the probability of surviving a time interval

conditional on having survived all the previous intervals. They also consider a contin-

uous timescale for the repeated measurements and they adopt a linear mixed Gaussian

model for the longitudinal process. This approach allows for different specifications of

the random-effects structure, which include models based on a random intercept only, a

random intercept and slope, a stationary Gaussian process, and a combination of the last

with random intercept and slope. A drawback of this approach is that its use is limited
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to normally distributed longitudinal outcomes as maximum likelihood estimation is based

on results specific of this distribution and based on the extended skew normal family of

distributions (Azzalini, 2005).

A discrete time-to-event history approach for the nonignorable missing process is also

adopted by Bartolucci and Farcomeni (2015). However, their proposal differs from Bar-

rett et al. (2015) in the way the assumption of time constancy of the random effects is

relaxed. In particular, they consider random effects that follow a first-order Markov chain

with a finite number of states. In addition, the authors also account for a time-constant

unobserved heterogeneity represented by a latent variable having a discrete distribution.

Moreover, a generalized linear mixed effects parameterization is adopted so that multi-

variate longitudinal data of different types are allowed. A drawback of this approach

is the instability of parameter estimates due to the presence of local maxima of the log-

likelihood function which is typical of complex statistical models based on latent variables

having a discrete distribution. Moreover, this approach requires the choice of the number

of latent states in a suitable way.

In this article, we generalize the approach of Barrett et al. (2015) based on a stationary

Gaussian process to different longitudinal outcomes, by adopting a GLM formulation. In

such a way, different types of longitudinal response may be considered. Besides, we adopt

a sequential logit parameterization for the survival process. Moreover, we show that our

proposal presents a high level of flexibility, as it may be easily adapted to longitudinal

outcomes which are not generated from a distribution belonging to the exponential family

(e.g., the Zero-Inflated Poisson), and we also deal with multivariate longitudinal response

processes.

Our proposal is based on a latent AR(1) process instead of a discrete one, so that the

resulting model is more parsimonious and stable than that of Bartolucci and Farcomeni

(2015). As illustrated in the following, we adopt a discretization of the timescale for

events, and each repeated observation which is measured in continuous time is considered

as lying in a certain “time window”. As exact likelihood inference is no longer applicable

for the proposed model, we rely on the quadrature method illustrated in Bartolucci et al.

(2014) in a longitudinal context without missing data and on recursions developed in the
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hidden Markov literature (Baum et al., 1970) to obtain estimates of model parameters

and perform likelihood inference. The main feature of the estimation method is that

its complexity increases linearly, rather than exponentially, with the number of time

occasions; see also Zucchini and MacDonald (2009) and Bartolucci et al. (2013). In the

end, the proposed model combines the main advantages of the models of Barrett et al.

(2015) and Bartolucci and Farcomeni (2015), being more general with respect to the first,

as longitudinal responses of a different nature may be modeled by a GLM parametrization,

and more stable with respect to the second, due to a more regular likelihood function.

The proposed estimation method is implemented by means of a set of R functions that we

make available to the reader upon request.

The remainder of the paper is organized as follows. In Section 2 we illustrate the

proposed JM and its extensions, whereas in Section 3 we develop likelihood inference for

this model. Monte Carlo simulations to assess the performance of the proposed method

are described in Section 4, whereas in Section 5 we illustrate three applications based on

data coming from medical studies in which the longitudinal outcomes of interest are of

different type. Some concluding remarks are presented in Section 6.

2 The proposed model

As in the standard formulation (Rizopoulous, 2012), the proposed JM is based on two

sub-models, one for the longitudinal process and the other one for the survival time,

which are linked through random effects and a specific association parameter accounting

for the nonignorable missing mechanism. In the following, we clarify the assumptions of

the proposed approach and then we introduce the resulting likelihood function.

2.1 Assumptions

Regarding the longitudinal process, we assume that for every subject i, with i = 1, . . . , n,

mi measurements are scheduled at time occasions tij, j = 1, . . . ,mi. We then let yij =

yi(tij) be the observed response of subject i at time tij which is seen as a realization of the

random variable Yij; any type of response is admitted, such as continuous, binary, and

count. Let also xij = xi(tij) be a vector of time-varying covariates, which may include
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tij itself or a function of this quantity. The key-point of the proposed approach is that

each observation j for subject i is taken at a time falling in a certain “time window”

sij = s(tij), with sij = 1, . . . , vi and vi = s(timi). Note that, in general, vi 6= mi, as an

individual may have a varying number of measurements in each time window, but also

vi > mi is possible when there are “sparse” measurements.

The sub-model for the longitudinal process is formulated in terms of a random intercept

GLM, as follows:

g(µij) = αisij + x′ijβ, (1)

with g(·) denoting a suitable link function and µij denoting the conditional expected value

of Yij. Moreover, β is the vector of regression coefficients and αisij is the time-varying and

subject-specific random intercept. The sequence of these random intercepts is assumed

to depend on time according to the AR(1) process

αis = αi,s−1ρ+ ηis
√

1− ρ2, s = 1, . . . , vi,

where αi1 = ηi1, the error terms ηis are independently distributed as N(0, σ2
η), and

ρ = cor(αis, αi,s−1) is the autocorrelation parameter. A special case of the model is

obtained for ρ = 1, which corresponds to the situation of time-constant subject-specific

random effects; in fact, ρ = 1 implies that αis = αi,s−1 with probability 1 for s = 2, . . . , vi.

Equation (1) specifies different types of GLM according to the chosen link function

g(·). In the case of continuous responses, g(·) is the identity function, so this equation

may be expressed as

Yij = αisij + x′ijβ + εij, (2)

with εij being independent error terms with distribution N(0, σ2
ε), or equivalently

E(Yij|αisij ,xij) = αisij + x′ijβ.

In the case of binary responses, the longitudinal sub-model is based on a logit link of the

type

log
p(Yij = 1|αisij ,xij)
p(Yij = 0|αisij ,xij)

= αisij + x′ijβ, (3)

whereas, in the case of count data, the following log-linear formulation results:

log E(Yij|αisij ,xij) = αisij + x′ijβ. (4)
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As usual, under the formulation based on equation (3) or (4), the response variables are

assumed to follow a Bernoulli or a Poisson distribution, respectively.

Concerning the sub-model for the survival process, and similarly to Barrett et al.

(2015), we adopt a sequential logit formulation based on the following assumption for the

random variable Si corresponding to the number of periods that subject i survives:

log
p(Si > s|Si ≥ s, αis,wis)

1− p(Si > s|Si ≥ s, αis,wis)
= αisγ +w′isδ, s = 1, . . . , vi − 1, (5)

where the conditioning argument Si ≥ s vanishes for s = 0. In the previous expression,

wis denotes the vector of covariates that are operative at time s and whose effect on the

survival is measured by the regression coefficients in vector δ; covariates in wis may be

the same as those in xij, for s = s(tij). Finally, parameter γ provides a measurement of

association between the longitudinal and the survival process. The case γ = 0 corresponds

to a model incorporating the assumption of ignorable missingness or Missing At Random

(MAR) data (Little and Rubin, 2002).

In summary, model based on assumptions (1) and (5) generalizes, to generic (i.e.,

continuos, binary, count) longitudinal outcomes, the proposal of Barrett et al. (2015)

based on a stationary Gaussian process. Moreover, as in that approach, dropout implies

that the scheduled observations yij are missing for each j such that s(tij) > si, where si

denotes the value assumed by Si. The number of available longitudinal observations is

then denoted by ji ≤ mi. It is also worth noting that, although we adopt a discretization

of the timescale for event, we can also obtain survival curves representing the probability

of survival of a group of individuals in each s(tij), as illustrated in detail in Section 5.3.

Finally, it is important to remind that si may be censored so that we introduce the

indicator variable di for the final status of subject i. In a typical medical application, di

is equal to 1 if subject i is alive at the end of period si (censored data) and to 0 otherwise

(uncensored data).

2.2 Extended models

We now show how the proposed model, relying on a GLM framework, may be extended

to account for different types of longitudinal outcome, which are not generated from
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a distribution belonging to the exponential family. Motivated by specific applications,

which will be illustrated in Sections 5.2 and 5.3, we focus in particular on the Zero-Inflated

Poisson (ZIP) distribution and we illustrate the extension of the proposed approach to deal

with multivariate longitudinal data. In the latter case, more outcomes, and of a different

nature, can be considered at each period of observation. It is also worth noting that the

proposed approach may be easily extended to longitudinal outcomes of a different nature,

such as categorical or ordinal, using a parametrization of the type adopted by Bartolucci

et al. (2014) for the longitudinal sub-model.

2.2.1 Longitudinal zero-inflated count outcomes

For longitudinal count data, the problem of the excess of zero values often occurs in

medical and sociological applications. The ZIP model (Lambert, 1992) can be effectively

used to deal with this problem. The model assumes that data come from a mixture of a

regular count distribution, such as the Poisson distribution, and a degenerate distribution

at zero:

Yij ∼

{
0 with probability τ,

Poisson(λij) with probability 1− τ.

The proposed model formulation described in Section 2.1 may be extended to ac-

count for excessive zeros by allowing the longitudinal process to follow the previous ZIP

distribution, instead of adopting a GLM parameterization, as follows:

p(Yij = 0|αisij ,xij) = τ + (1− τ)e−λij ,

p(Yij = y|αisij ,xij) = (1− τ)
λyij e

−λij

y!
, y > 0, (6)

where

λij = exp(αisij + x′ijβ).

Concerning the sub-model for the survival process, we again adopt a sequential logit

formulation as in (5). Also note that the probability τ could be modeled so that it

depends on individual covariates by means of a logit parameterization; see, among others,

Min and Agresti (2005).
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2.2.2 Multivariate longitudinal outcomes

In order to extend the proposed approach to multivariate longitudinal outcomes, we first

note that a formulation equivalent to that in Section 2.1 may be based on a standardized

AR(1) process based on the assumption

α∗is = α∗i,s−1ρ+ η∗is
√

1− ρ2, s = 1, . . . , vi, (7)

with α∗i1 = η∗i1 and η∗is ∼ N(0, 1). In this case, assumption (1) is replaced by

g(µij) = α∗isijφ+ x′ijβ (8)

and assumption (5) is replaced by

log
p(Si > s|Si ≥ s, αis,wis)

1− p(Si > s|Si ≥ s, αis,wis)
= α∗isψ +w′isδ. (9)

In practice, parameter φ in (8) corresponds to the square root of σ2
η, which is the stationary

variance of the latent AR(1) in the original formulation, whereas parameter ψ in (9)

corresponds to the product between this square root and parameter γ used in the initial

survival model (5).

In the multivariate case, we observe the response variables Yhij, h = 1, . . . , r, for each

unit i and occasion j. These variables may be of a different nature; for instance, in Section

5.3 we deal with a case of two response variables, the first of which is continuous and the

second is binary. To deal with this case, we extend the above formulation based on a

standardized AR(1) process by assuming that

gh(µhij) = α∗isijφh + x′ijβh, h = 1, . . . , r, (10)

with gh(·) denoting a suitable link function and µhij denoting the conditional expected

value of Yhij. Moreover, βh is the vector of regression coefficients for the h-th response

variable, and φh measures the association between the longitudinal sub-model referred to

variable Yhij and the random effects. Finally, assumption (9) is retained, exactly in the

same form, for the survival process.

It is worth noting that a more flexible formulation could be based on adopting a specific

latent AR(1) process for each longitudinal response sequence, allowing all these processes
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to affect the survival time through the use of specific coefficients. We considered also this

extension but we verified that, at least using the maximum likelihood inference tools that

will be illustrated in the following, it is impossible to deal with more than two response

variables at the same time and even for the bivariate case there are severe numerical

problems. Consequently, in this paper we focus on the formulation based on a single

latent AR(1) process which is illustrated above. This process has the role of summarizing

all unobservable factors that affect the response variables and, at the same time, the

survival process. As shown in Section 5.3, the resulting model is competitive in terms of

goodness-of-fit with less parsimonious models, while having a simpler interpretation and

providing more stable results in terms of parameter estimates.

2.3 Model likelihood

Assuming independence between the n sample units, the model likelihood function has

components corresponding to the manifest distribution p(yi, si, di|X i,W i), for i = 1, . . . , n,

where yi = (yi1, . . . , yiji)
′ is the observed vector of longitudinal responses and X i and W i

are matrices of covariates with columns xij and wis, respectively, for j = 1, . . . , ji and

s = 1, . . . , si. The model log-likelihood is then

`(θ) =
∑
i

log p(yi, si, di|X i,W i), (11)

where θ is the vector of all parameters.

The previous distribution is defined as

p(yi, si, di|X i,W i) =

∫
p(yi, si, di|αi,X i,W i)f(αi)dαi, (12)

based on suitably marginalizing out αi = (αi1, . . . , αisi)
′ from

p(yi, si, di|αi,X i,W i) = p(yi|αi,X i)p(si, di|αi,W i).

The distributions involved in the previous expression are defined as follows:

p(yi|αi,X i) =

ji∏
j=1

p(yij|αisij ,xij),

p(si, di|αi,W i) =

si−1∏
s=1

p(Si > s|Si ≥ s, αis,wis)

× p(Si > si|Si ≥ si, αisi ,wisi)
dip(Si = si|Si ≥ si, αisi ,wisi)

1−di ,
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with p(yij|αisij ,xij) defined according to the assumed model for the longitudinal responses,

see equation (1), and the probabilities referred to Si defined according to (5). The above

expressions may be simply adapted to deal with the multivariate formulation illustrated

in Section 2.2.2, considering that at each time occasion we observe a vector of outcomes

rather than a single outcome.

In general, an explicit expression for the si-dimensional integral in (12) is not available.

In the following, we propose a method to solve this integral and then performing maximum

likelihood estimation of the model parameters.

3 Proposed estimation approach

In order to compute the likelihood function of any model in the proposed class, we rely

on a quadrature method based on an equally spaced grid of points and on a recursion

developed in the hidden Markov literature (see Baum et al., 1970); see also Heiss (2008)

for a related sequential quadrature method and Bartolucci et al. (2014) for a related

application to the estimation of models for longitudinal data.

3.1 Sequential quadrature method

The proposed method to compute the integral in (12) is based on expressing this integral

as

p(yi, si, di|X i,W i) =

∫
qsi(αisi ,yi, si, di|X i,W i)dαisi ,

where

q1(αi1,yi, si, di|X i,W i) = f(αi1)

 ∏
j:s(tij)=1

p(yij|αi1,xij)


×

{
p(Si > 1|αi1,wi1)dip(Si = 1|αi1,wi1)1−di if si = 1,

p(Si > 1|αi1,wi1) if si > 1,

and

qs(αis,yi, si, di|X i,W i) =

∫
qs−1(αi,s−1,yi, si, di|X i,W i)f(αis|αi,s−1)dαi,s−1

 ∏
j:s(tij)=s

p(yij|αis,xij)


×

{
p(Si > s|Si ≥ s, αis,wis)

dip(Si = s|Si ≥ s, αis,wis)
1−di if si = s,

p(Si > s|Si ≥ s, αis,wis) if si > s,
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for s = 2, . . . , si.

In the above expression, f(αi1) is the density of a normal distribution centered on zero

and with variance σ2
η, whereas f(αis|αi,s−1) is the density of the conditional distribution

N(αi,s−1ρ, (1− ρ2)σ2
η). Moreover, we compute the above integrals on the basis of uniform

quadrature method based on a set of k nodes, denoted by a1, . . . , ak, in a certain interval.

In our applications, we initially use k = 51 points in the grid from -5 to 5. The weights

corresponding to the first time occasion are obtained as

νu =
f(au)∑k
l=1 f(al)

, u = 1, . . . , k, (13)

whereas the weights for the following time windows are obtained as

πūu =
f(au|aū)∑k
l=1 f(al|aū)

, ū, u = 1, . . . , k. (14)

In practice, the proposed approach to obtain the model likelihood amounts to perform

the following recursion for every sample unit i = 1, . . . , n:

1. compute

qi1u = νu

 ∏
j:s(tij)=1

p(yij|αi1 = au,xij)


×

{
p(Si > 1|αi1 = au,wis)

dip(Si = 1|αi1 = au,wis)
1−di if si = 1,

p(Si > 1|αi1 = au,wis) if si > 1;

2. compute

qisu =

[
k∑

ū=1

qi,s−1,ūπūu

] ∏
j:s(tij)=s

p(yij|αis = au,xij)


×

{
p(Si > s|Si ≥ s, αis = au,wis)

dip(Si = s|Si ≥ s, αis = au,wis)
1−di if si = s,

p(Si > s|Si ≥ s, αis = au,wis) if si > s,

for u = 1, . . . , k and s = 2, . . . , si.

3. obtain the manifest distribution of yi, si, and di as

p(yi, si, di|X i,W i) =
k∑

u=1

qisiu.
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On the basis of the recursion defined above, we obtain the log-likelihood function

`(θ) as defined in (11) with a computational complexity that linearly increases with

the number of time occasions. How to use this function for likelihood inference on the

model parameters is clarified in the following. For the moment, it is worth noting that

the proposed quadrature method amounts to approximate the latent variable distribution,

which is continuous, with a discrete distribution. In other terms, we are approximating the

proposed model by a hidden Markov model (Zucchini and MacDonald, 2009; Bartolucci

et al., 2013) based on initial probabilities νu and transition probabilities πūu which depend

on the parameters σ2
η and ρ through definitions (13) and (14), respectively, and we are

using the forward recursion for computing these models proposed by Baum et al. (1970);

see also Welch (2003). Note that the sequential quadrature approach proposed by Heiss

(2008) for dealing with simpler models based on an AR(1) latent process is similar, but the

integral at each step are computed in a different way. As we experimented, the recursion

we proposed here is more stable as it relies on normalized weights which sum up to 1, as

it is already clarified in Bartolucci et al. (2014).

3.2 Likelihood inference

We use the log-likelihood function `(θ) computed as above to estimate the model parame-

ters collected in θ. For this aim we use a numerical maximizer of quasi-Newton type and,

to make the maximization faster, we also provide the maximizer with the score function,

which is equal to

∂`(θ)

∂θ
=

n∑
i=1

1

p(yi, si, di|X i,W i)

∂p(yi, si, di|X i,W i)

∂θ
.

The derivative of p(yi, si, di|X i,W i), used in the expression above, is computed by a

recursive method that follows the same steps of the recursion illustrated above and recalls

that introduced by Lystig and Hughes (2002). The quasi-Newton maximizer also provides

the observed information matrix, computed as minus the numerical derivative of the score

vector; this is used to compute the standard errors for the parameter estimates in the usual

way.

Regarding the initialization of the estimation algorithm we use both a determinis-
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tic and a random rule, the latter repeated a given number of times, so as to check for

the presence of local maxima. More in detail, the estimation strategy based on a de-

terministic initialization of the model parameters consists in adopting as starting values

the coefficients obtained by estimating separate naive models on the same data: a GLM

(without random effects) for the longitudinal outcome, where the link function is spec-

ified in a suitable way according to the nature of the response variables, and a binary

logit model for the individual status. In order to obtain random starting rules, these

coefficients are perturbed by adding random values generated from a normal distribution

with mean zero and standard deviation equal to the corresponding standard error. Under

both initialization rules, to balance the computational time and the precision of estimates

at convergence, the maximization process is performed in two steps: we first use k = 51

nodes until convergence and, then, we run again the maximization algorithm with k = 101

nodes using, as starting values, the estimates obtained at the previous step. We make our

R implementation available to the reader upon request.

It is worth recalling that the method of Barrett et al. (2015), based on exact likelihood

inference, is applicable only to longitudinal outcomes belonging to the family of skew nor-

mal distributions; their approach also requires a probit parameterization for the survival

process. On the other hand, our estimation method, based on a sequential quadrature,

allows for longitudinal outcomes of a different nature, including the normal case as a

special one. A comparison between the two approaches is performed in Section 5.1 on the

basis of a dataset with a continuous response.

4 Simulation study

In the following, we illustrate a Monte Carlo simulation study aimed at assessing the

performance of the proposed method for different types of longitudinal outcome.

4.1 Design

We implemented a simulation design recalling that of Barrett et al. (2015). In particular,

we simulated univariate longitudinal data with dropout for n = 1000, 2000 individuals

and different longitudinal sub-models (with continuous, binary, and count outcomes). In
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this design, the longitudinal measurements are randomly distributed over vi = 5, 10 time

windows, with a maximum of mi = 10, 20 repeated measurements per individual. It is

important stressing that each individual may have a varying number of visits in each time

windows. A uniform distribution is adopted for the visit time and the dropout may occur

during any time interval.

The simulation design considers continuous, binary, and count response variables.

Moreover, following Barrett et al. (2015), it considers two covariates, in both longitudinal

and survival models, supposed to be: age, with initial values generated uniformly from the

interval (10, 30), and a binary covariate (sex), which assumes value 1 with probability 0.5.

Two different true values are considered for the association parameter, γ = 0.05, 0.5, and

for the autocorrelation coefficient, ρ = 0.7, 0.9. For the variance of the random effects,

it is assumed σ2
η = 1, 4, in the case of continuous and binary data, and σ2

η = 0.25, 1, for

count data. In this case, σ2
η = 1 is a value quite large for the variance since the mean

of the outcome variable is an exponential function of the combination of the fixed and

the random effects (see Xu et al., 2007, for a similar setting). Finally, for continuous

outcomes, we have σ2
ε = 1, 4, with σ2

ε denoting the variance of the repeated measures.

Overall, we considered a total of 22 different scenarios. Here, we focus on the results

concerning 12 scenarios (i.e., four scenarios for each type of longitudinal outcome); the

results of the remaining scenarios are included in the Appendix.

The first type of scenario (Scenario 1) assumes a parameter setting similar to that

considered in Barrett et al. (2015). More in detail, we have n = 1000, vi = 5, and

a maximum of 10 repeated observations per individual. For the survival process, we

assume δ = (2, 0.01, 0.01, 0.1)′, and γ = 0.05. The variance of the random effects is

assumed to be σ2
η = 1 for continuous and binary data and σ2

η = 0.25 for count data,

whereas the autocorrelation coefficient is set equal to ρ = 0.7. The parameters for the

longitudinal process are set equal to β = (90,−1.7,−1.7, 2)′ for continuous data, to

β = (4,−0.2,−0.2, 2)′ for binary data, and to β = (2,−0.02,−0.02, 0.5)′ for count data.

Moreover, for continuous outcomes, the first scenario considers a variance of the repeated

measure equal to σ2
ε = 1. In such a context of continuous data, given the equality on the

parameters setting, we can consider the results of Barrett et al. (2015), denoted in the
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following as SGP II, as benchmark design. The second type of scenario (Scenario 2) is

based on a larger variance of the random effects, with σ2
η = 4 for continuous and binary

data and σ2
η = 1 for count data, whereas Scenario 3 is based on a larger number of time

windows, vi = 10. The last type of scenario (Scenario 4) evaluates the effect of an increase

in the number of individuals, with n = 2000.

4.2 Results

Tables 1, 2, and 3 report the estimation results obtained under the four different scenarios

described above, with reference to continuous, binary and count outcomes, respectively,

and based on 500 datasets generated under each scenario. The performance of the pro-

posed estimation method is evaluated in terms of mean, standard deviations (sd) and root

mean square errors (RMSE) of the considered estimator. We also report the averaged es-

timated standard error (se) obtained on the basis of the observed information matrix, as

described at the end of Section 3.2.

The results in Table 1, referred to continuous data, lead us to conclude that, under all

scenarios, the means of the parameter estimates are close to the true values.

Scenario 1 confirms the SGP II results of Barrett et al. (2015). This allows us to

validate the proposed estimation method. Under Scenario 2, we observe larger standard

errors for the longitudinal parameters. Even the standard errors and the RMSE of σ2
η are

larger that those obtained under Scenario 1. On the other hand, the standard error of

the estimator of γ is smaller. Under Scenario 3, characterized by a larger number of time

windows with respect to the other scenarios, we observe an improving of the behavior of

the estimators of the survival model parameters, whereas the standard errors and RMSE

of the estimators of σ2
ε , σ

2
η and ρ slightly increase. Finally, as n increases (Scenario 4),

the behavior of the estimators improves for all parameters. In all scenarios, the estimated

standard errors obtained by the observed information matrix are in agreement with the

Monte Carlo standard deviation.

Even in the context of binary data (Table 2), under Scenario 1, all parameters are

sharply estimated by the proposed method, with a mean of the estimates close to the

true values. Scenario 2 confirms the behavior of the estimators observed in the context
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Scenario 1 Scenario 2
(benchmark) σ2

η = 4
Parameters True Mean sd se RMSE True Mean sd se RMSE

Longitudinal

Intercept 90.000 90.003 0.122 0.127 0.122 90.000 90.015 0.227 0.225 0.228
Time -1.700 -1.701 0.016 0.017 0.016 -1.700 -1.699 0.028 0.026 0.028

Age at t0 -1.700 -1.700 0.005 0.006 0.005 -1.700 -1.701 0.010 0.010 0.010
Sex 2.000 2.000 0.070 0.065 0.070 2.000 1.998 0.117 0.116 0.118

Survival

Intercept 2.000 1.985 0.220 0.224 0.220 2.000 1.996 0.227 0.224 0.227
Time 0.010 0.008 0.037 0.038 0.037 0.010 0.008 0.039 0.038 0.039

Age at t0 0.010 0.011 0.009 0.009 0.009 0.010 0.010 0.009 0.009 0.009
Sex 0.100 0.102 0.109 0.107 0.109 0.100 0.099 0.103 0.107 0.103
γ 0.050 0.050 0.080 0.079 0.080 0.050 0.051 0.035 0.034 0.035

Others

σ2
ε 1.000 1.000 0.031 0.031 0.031 1.000 1.001 0.032 0.032 0.032
σ2
η 1.000 0.998 0.055 0.054 0.055 4.000 3.990 0.162 0.158 0.162
ρ 0.700 0.700 0.028 0.028 0.028 0.700 0.698 0.017 0.017 0.018

Scenario 3 Scenario 4
vi = 10 n = 2000

Parameters True Mean sd se RMSE True Mean sd se RMSE

Longitudinal

Intercept 90.000 89.994 0.130 0.127 0.130 90.000 90.000 0.090 0.090 0.090
Time -1.700 -1.700 0.010 0.010 0.010 -1.700 -1.700 0.012 0.012 0.012

Age at t0 -1.700 -1.700 0.006 0.006 0.006 -1.700 -1.700 0.004 0.004 0.004
Sex 2.000 1.999 0.064 0.064 0.064 2.000 1.996 0.047 0.046 0.047

Survival

Intercept 2.000 1.978 0.164 0.171 0.165 2.000 2.001 0.159 0.158 0.159
Time 0.010 0.010 0.015 0.015 0.015 0.010 0.007 0.028 0.027 0.028

Age at t0 0.010 0.010 0.007 0.007 0.007 0.010 0.010 0.006 0.007 0.006
Sex 0.100 0.103 0.084 0.085 0.084 0.100 0.105 0.076 0.076 0.076
γ 0.050 0.052 0.075 0.076 0.075 0.050 0.054 0.057 0.055 0.057

Others

σ2
ε 1.000 1.002 0.041 0.043 0.041 1.000 0.999 0.022 0.022 0.022
σ2
η 1.000 0.991 0.060 0.061 0.061 1.000 1.001 0.039 0.038 0.039
ρ 0.700 0.700 0.031 0.030 0.031 0.700 0.699 0.019 0.020 0.019

Table 1: Mean of the parameter estimates, standard deviation (sd), average estimated

standard error (se) and root mean square error (RMSE) for continuous data: Scenarios

1-4.

of continuos outcomes, with a quite large standard error and RMSE of the estimator of

σ2
η. The increase in the number of time windows, vi = 10, leads to a reduction of the

standard deviations of parameters in δ. However, the behavior of estimators of β and

γ remains almost unchanged with respect to Scenario 1. Moreover, the worsening of the

performance of the AR(1) parameter estimators is more evident than that observed for

continuous data. Scenario 4 shows an improvement of all estimators when the sample size

increases from n = 1000 to n = 2000. As in the context of continuous data, under all

scenarios, the propose method produces reliable estimates of the standard error.

The results of the simulations involving longitudinal count data (Table 3) are in agree-
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Scenario 1 Scenario 2
(benchmark) σ2

η = 4
Parameters True Mean sd se RMSE True Mean sd se RMSE

Longitudinal

Intercept 4.000 4.003 0.242 0.232 0.242 4.000 4.015 0.332 0.330 0.332
Time -0.200 -0.200 0.032 0.032 0.032 -0.200 -0.200 0.041 0.043 0.041

Age at t0 -0.200 -0.200 0.011 0.011 0.011 -0.200 -0.201 0.015 0.015 0.015
Sex 2.000 2.007 0.117 0.115 0.118 2.000 2.008 0.165 0.166 0.165

Survival

Intercept 2.000 1.991 0.220 0.224 0.220 2.000 2.008 0.218 0.225 0.218
Time 0.010 0.010 0.039 0.038 0.039 0.010 0.010 0.040 0.038 0.040

Age at t0 0.010 0.010 0.009 0.009 0.009 0.010 0.010 0.009 0.009 0.009
Sex 0.100 0.098 0.105 0.107 0.105 0.104 0.100 0.110 0.107 0.110
γ 0.050 0.053 0.137 0.135 0.137 0.050 0.053 0.046 0.047 0.046

Others

σ2
η 1.000 1.005 0.190 0.198 0.190 4.000 4.023 0.479 0.510 0.479
ρ 0.700 0.693 0.089 0.096 0.090 0.700 0.695 0.041 0.041 0.042

Scenario 3 Scenario 4
vi = 10 n = 2000

Parameters True Mean sd se RMSE True Mean sd se RMSE

Longitudinal

Intercept 4.000 4.010 0.265 0.264 0.265 4.000 4.015 0.166 0.164 0.167
Time -0.200 -0.199 0.019 0.019 0.019 -0.200 -0.202 0.023 0.022 0.023

Age at t0 -0.200 -0.201 0.012 0.012 0.012 -0.200 -0.200 0.007 0.007 0.007
Sex 2.000 2.004 0.128 0.131 0.128 2.000 1.997 0.076 0.081 0.076

Survival

Intercept 2.000 1.989 0.174 0.172 0.174 2.000 2.005 0.162 0.158 0.162
Time 0.010 0.009 0.016 0.015 0.016 0.010 0.008 0.026 0.027 0.026

Age at t0 0.010 0.011 0.007 0.007 0.007 0.010 0.010 0.007 0.007 0.007
Sex 0.100 0.101 0.084 0.085 0.084 0.100 0.099 0.073 0.076 0.073
γ 0.050 0.058 0.135 0.141 0.135 0.050 0.055 0.100 0.094 0.100

Others

σ2
η 1.000 1.028 0.275 0.282 0.276 1.000 0.999 0.135 0.138 0.135
ρ 0.700 0.685 0.103 0.110 0.104 0.700 0.700 0.063 0.065 0.063

Table 2: Mean of the parameter estimates, standard deviation (sd), average estimated

standard error (se) and root mean square error (RMSE) for binary data: Scenarios 1-4.

ment with the results already discussed for the previous cases. In summary, the standard

deviation and RMSE of the parameter estimates in β are larger when we assume a higher

variance of the random effects. On the other hand, the behavior of the estimator of the

association parameter γ improves with σ2
η = 1. The accuracy of the estimated parameters

of the survival process increases when the number of time windows vi increases. Even in

this case, and as expected, a larger value of n leads to better results in terms of accuracy

and efficiency of the parameter estimates.

The additional scenarios reported in Appendix allows us to conclude that, in both

continuous, binary, and count data, an increase of the maximum number of repeated

measurements per individual, mi, leads to a lower standard error and RMSE of the es-

timated parameters of the longitudinal process. Moreover, also the standard errors and
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Scenario 1 Scenario 2
(benchmark) σ2

η = 1
Parameters True Mean sd se RMSE True Mean sd se RMSE

Longitudinal

Intercept 2.000 1.999 0.064 0.061 0.064 2.000 1.996 0.104 0.089 0.104
Time -0.020 -0.020 0.007 0.008 0.007 -0.020 -0.020 0.013 0.011 0.013

Age at t0 -0.020 -0.020 0.003 0.003 0.003 -0.020 -0.020 0.005 0.004 0.005
Sex 0.500 0.502 0.031 0.031 0.031 0.500 0.506 0.060 0.046 0.061

Survival

Intercept 2.000 1.998 0.223 0.224 0.223 2.000 1.988 0.242 0.224 0.242
Time 0.010 0.007 0.036 0.038 0.036 0.010 0.011 0.038 0.038 0.038

Age at t0 0.010 0.010 0.009 0.009 0.009 0.010 0.010 0.010 0.009 0.010
Sex 0.100 0.103 0.106 0.107 0.106 0.100 0.106 0.100 0.107 0.101
γ 0.050 0.048 0.144 0.149 0.144 0.050 0.046 0.068 0.067 0.068

Others

σ2
η 0.250 0.250 0.012 0.012 0.012 1.000 1.009 0.039 0.026 0.040
ρ 0.700 0.699 0.021 0.022 0.021 0.700 0.701 0.016 0.015 0.016

Scenario 3 Scenario 4
vi = 10 n = 2000

Parameters True Mean sd se RMSE True Mean sd se RMSE

Longitudinal

Intercept 2.000 2.003 0.061 0.060 0.061 2.000 2.003 0.042 0.043 0.042
Time -0.020 -0.020 0.005 0.005 0.005 -0.020 -0.021 0.006 0.005 0.006

Age at t0 -0.020 -0.020 0.003 0.003 0.003 -0.020 -0.020 0.002 0.002 0.002
Sex 0.500 0.500 0.030 0.031 0.030 0.500 0.499 0.022 0.022 0.022

Survival

Intercept 2.000 1.994 0.176 0.171 0.176 2.000 1.993 0.161 0.158 0.161
Time 0.010 0.010 0.015 0.015 0.015 0.010 0.009 0.028 0.027 0.028

Age at t0 0.010 0.010 0.008 0.007 0.008 0.010 0.010 0.007 0.007 0.007
Sex 0.100 0.100 0.086 0.085 0.086 0.100 0.103 0.075 0.076 0.075
γ 0.050 0.049 0.145 0.142 0.145 0.050 0.048 0.104 0.105 0.104

Others

σ2
η 0.250 0.250 0.012 0.012 0.012 0.250 0.250 0.008 0.008 0.008
ρ 0.700 0.698 0.022 0.023 0.023 0.700 0.700 0.015 0.016 0.015

Table 3: Mean of the parameter estimates, standard deviation (sd), average estimated

standard error (se) and root mean square error (RMSE) for count data: Scenarios 1-4.

RMSE of the estimators of σ2
η and ρ slightly decreases, in contrast to the results registered

in Scenario 3, when the number of time windows increases. Moreover, for continuous data,

a larger variance of the repeated measures, σ2
ε = 4, leads to a worsening of the behavior

of the estimators of the longitudinal parameters, together with a loss of efficiency of the

estimates of σ2
η, ρ, and σ2

ε with respect to the benchmark design. We also note that

the association parameter γ and the autocorrelation parameter ρ do not seem to have a

substantial influence on the estimation results.
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5 Applications

We propose three applications of the class of JMs specified in Sections 2.1 and 2.2 on some

medical datasets, characterized by different types of longitudinal outcome: continuous,

count with excess of zeros, and bivariate with a normal and a binary response. The first

example, concerning a continuous longitudinal response variable, is mainly used to show

the validity of our proposal in comparison with that of Barrett et al. (2015). Then, the

more general capability of application of the proposed model is illustrated through the

second and the third examples. For each of them we provide the estimates of model

parameters under the general assumption of MNAR and AR(1) random effects and under

the following two special cases: MNAR assumption with time-constant random effects

and MAR assumption (with AR(1) random effects).

5.1 Example 1: lung functioning in patients affected by cystic

fibrosis

In order to validate our model and the related estimation method, we compare it with

the SGP II model of Barrett et al. (2015), which is equivalent to our proposal in the

case of a normally distributed repeated outcome. We consider a dataset coming from

the UK Cystic Fibrosis registry and covering years 2007-2013. The data concern 3,627

patients affected by cystic fibrosis, which is a genetic chronic disease influencing the

physiological functioning of lungs, pancreas, liver, kidneys and intestine; usually, patients

die as a consequence of respiratory complications. An important biomarker of the lung

functioning of a patient is represented by the percentage of predicted forced expiratory

volume in 1 second (FEV1), which is usually measured once a year. The total number

of FEV1 measurements is 21,578 and ranges from 1 to 7 for each patient with average

3.68 (standard deviation 1.92) and median 4.0. Our aim consists in detecting a possible

association between values of FEV1 and survival, other than estimating the time trend,

after adjusting for sex and age at baseline. As the longitudinal outcome is normally

distributed, the longitudinal sub-model is specified according to (2).

In Table 4 we show the estimation results referred to the SGP II model of Barrett et al.
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(2015)1 (columns 2-4) and to the JM under MNAR assumption with AR(1) random effects

(columns 5-7). We observe that the proposed estimation method provides parameter

estimates and standard errors that strongly resemble those obtained through the exact

likelihood based approach. These results may be seen as a further evidence that our

proposal leads to the same results of the method of Barrett et al. (2015) while being more

general of the latter.

Model SGP II MNAR with
of Barrett et al. (2015) AR(1) random effects

Est. se p-value Est. se p-value
Longitudinal sub-model
Intercept 89.126 0.929 0.000 89.086 0.929 0.000
Time -1.245 0.053 0.000 -1.232 0.054 0.000
Age at baseline -0.695 0.033 0.000 -0.696 0.033 0.000
Sex (male) 0.109 0.734 0.882 0.117 0.733 0.873
Survival sub-model
Intercept 6.508 0.235 0.000 8.179 0.372 0.000
Time -0.011 0.024 0.656 -0.018 0.033 0.583
Age at baseline -0.045 0.006 0.000 -0.066 0.008 0.000
Sex (male) 0.164 0.117 0.161 0.234 0.161 0.146
γ̂ 0.056 0.004 0.000 0.085 0.005 0.000
Others
σ̂2
ε 37.661 1.227 0.000 36.760 1.125 0.000
σ̂2
η 534.883 22.434 0.000 535.018 11.556 0.000
ρ̂ 0.951 0.015 0.000 0.948 0.002 0.000

Table 4: Parameter estimates for the value of FEV1, under the SGP II model of Barrett

et al. (2015) and under the assumption of nonignorable dropout (MNAR) with AR(1)

random effects.

On the basis of both approaches we conclude for a significant negative effect of age at

baseline on FEV1 and survival and a positive, although not significant, effect on FEV1 and

survival of males with respect to females. Moreover, the estimated value of parameter γ

denotes a positive association between the lung functioning and the probability of survival.

Finally, it is worth noting that the proposed estimation algorithm is highly stable. In

particular, in order to assess the convergence to the global maximum of the model log-

likelihood, we performed a series of 100 random initializations of the proposed estimation

algorithm, following the strategy described in Section 3.2. We observed that the log-

likelihood at convergence equals the best solution 81 times out of 100.

1 The R functions for the estimation of the SGP II model are available at http://

wileyonlinelibrary.com/journal/rss-datasets.
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5.2 Example 2: effect of β-carotene in prevention of nonmelanoma

skin cancer

We analyze the effect of β-carotene for the prevention of nonmelanoma skin cancer in high-

risk individuals. The dataset used in this application comes from a randomized study (for

details see Greenberg et al., 1990) involving 1,683 individuals randomized to placebo or

to a treatment based on β-carotene for a period of 5 years. The response variable of

interest is the count of yearly new skin cancers. The total number of observations is 7,081

with a strong prevalence of zeros (83.55%). As the longitudinal outcome is well described

by a ZIP variable, the longitudinal sub-model is specified as in equation (6).

We observe that the number of counts ranges from 1 to 5 for each individual with

just 811 patients (48.19%) having a complete pattern of five measurements. Therefore,

it is reasonable to account for the possible association between the longitudinal response

process and the dropout process, where the status of an individual is equal to 1 if he/she

is in the follow up at a given time and to 0 if the individual drops out from the follow up

(and, then, the count of yearly new skin cancers is missing).

Following Hasan et al. (2009), who analyze the same data through a pattern-mixture

ZIP model to account for informative dropout, we consider in the proposed model the

following baseline covariates, which affect both the longitudinal and the survival processes:

age (in years), type of skin (1 for burned individuals, 0 otherwise), sex (0 for females and

1 for males), number of previous skin cancers (exposure), treatment (0 for placebo and 1

for β-carotene), time (in years, from 1 to 5).

In Table 5 we report the parameter estimates of the JM under the general assumption

of MNAR with AR(1) random effects (columns 2-4) and under the specific assumption

of MNAR with time-constant random effects (columns 5-7), other than the constrained

model that assumes ignorable dropout (columns 8-10).

We observe that results concerning the longitudinal process are perfectly in agreement

with those obtained by Hasan et al. (2009), both in terms of estimated coefficients and

in terms of statistical significance. More in detail, the risk of skin cancer is significantly

higher for older males with burned skin and with a previous history of skin cancer rather

than for younger females having a nonburned skin and not previous skin cancers. On the
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MNAR with AR(1) r.e. MNAR with time-constant r.e. MAR

Est. se p-value Est. se p-value Est. se p-value
Longitudinal sub-model
Intercept -4.535 0.333 0.000 -4.210 0.324 0.000 -4.528 0.334 0.000
Age 0.019 0.005 0.000 0.018 0.005 0.000 0.019 0.005 0.000
Skin (burns) 0.327 0.085 0.000 0.328 0.085 0.000 0.331 0.086 0.000
Sex (males) 0.650 0.099 0.000 0.644 0.099 0.000 0.650 0.099 0.000
Exposure 0.177 0.010 0.000 0.176 0.010 0.000 0.178 0.010 0.000
Treatment (β-carotene) 0.119 0.085 0.158 0.129 0.085 0.126 0.118 0.085 0.165
Time 0.014 0.024 0.568 0.022 0.020 0.278 0.007 0.024 0.781
Survival sub-model
Intercept 3.894 0.275 0.000 3.893 0.275 0.000 – – –
Age -0.001 0.004 0.821 -0.001 0.004 0.821 – – –
Skin (burns) -0.152 0.075 0.044 -0.151 0.075 0.044 – – –
Sex (males) -0.230 0.083 0.005 -0.231 0.083 0.005 – – –
Exposure -0.006 0.011 0.615 -0.005 0.011 0.624 – – –
Treatment (β-carotene) -0.162 0.075 0.030 -0.162 0.075 0.030 – – –
Time -0.507 0.029 0.000 -0.507 0.029 0.000 – – –
γ̂ -0.090 0.059 0.126 -0.086 0.062 0.164 – – –
Others
τ̂ 0.862 0.040 0.000 0.739 0.026 0.000 0.861 0.040 0.000
σ̂2
η 1.426 0.126 0.000 1.141 0.105 0.000 1.429 0.126 0.000
ρ̂ 0.852 0.032 0.000 – – – 0.853 0.031 0.000

Table 5: Parameter estimates for the number of yearly new skin cancers, under the as-

sumptions of nonignorable dropout (MNAR) with AR(1) random effects, MNAR with

time-constant random effects, and ignorable dropout (MAR).

other hand, the data at issue do not provide any evidence of a significant effect of the

treatment based on β-carotene (p-values greater than 0.10), coherently with the results

obtained by Greenberg et al. (1990) and Hasan et al. (2009). Moreover, although the effect

of time is not significant, the estimated value of the autocorrelation coefficient (ρ̂ = 0.85)

denotes that the count of new skin cancers at a given year highly depends on the count at

the previous year. This result argues in favor of AR(1) random effects rather than time-

constant random effects, especially as the model specified under the former assumption

has a better goodness-of-fit than the model under the latter assumption (BIC values equal

to 12,957.22 and 12,966.81, respectively).

Concerning the dropout process, the association parameter (γ) estimated both under

the assumption of AR(1) random effects and under the assumption of time-constant ran-

dom effects is negative, but not statistically significant (p-values greater than 0.10). This

result agrees with the conclusions of Hasan et al. (2009) and provides evidence in favor

of the MAR assumption. As further evidence, we observe that the parameter estimates

obtained under the MAR assumption (Table 5, columns 8-10) are very similar to those

obtained under the MNAR assumption (Table 5, columns 2-4 and 5-7).

Different to the pattern-mixture model of Hasan et al. (2009), our proposed JM (both
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with AR(1) and with time-constant random effects) provides a deeper insight of the

dropout process. We observe that males with burned skin and treated with β-carotene

tend to exit from the follow-up significantly before than other individuals.

Finally, as outlined in the previous section, also in this context the proposed estimation

algorithm is highly stable: the log-likelihood at convergence obtained through a random

rule equals the best solution 99 out of 100 times and corresponds to the solution reached

by the deterministic initialization strategy.

5.3 Example 3: Bivariate analysis of two biomarkers of primary

biliary cirrhosis

We analyze a dataset concerning 312 patients affected by primary biliary cirrhosis, which

represents a chronic and fatal liver disease characterized by destruction of bile ducts and,

eventually, by cirrhosis of the liver. The data were collected by the Mayo Clinic from 1974

to 1984 (Murtaugh et al., 1994) during a randomized study for the treatment of primary

biliary cirrhosis through a D-penicillamine based drug. Patients affected by this disease

present several biomarkers associated with the disease progression. Here we focus on the

(logarithm of) serum bilirubin (in mg/dl) and on the possible presence of edema that

are a consequence of accumulation of toxic compounds and fluids. The total number of

measurements is 1,945 and ranges from 1 to 16 for each patient with average 6.2 (standard

deviation 3.8) and median 5, then the dropout represents a relevant aspect of the study

that enforces the assumption of nonignorable missingness.

We analyze the effect of D-penicillamine on the logarithm of serum bilirubin and on

the presence of edema jointly with the status of patients, being the status equal to 1 if the

patient is free-transplantation alive and 0 in case of death or transplantation at a certain

time. Since the first longitudinal outcome is described by a continuous normal variable

and the second longitudinal outcome is described by a binary variable, the link functions

of the sub-model (10), with r = 2, specify as an identity function and a logit function,

similarly to equations (2) and (3), respectively. Following Bartolucci and Farcomeni

(2015), who perform a similar analysis on the same data adopting a mixed latent Markov

model, we also account for the following baseline covariates: age, gender, albumin in
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mg/dl, logarithm of alkaline phosphatase in U/L, logarithm of transaminase (SGOT) in

U/ml. Besides, we adjust for the effect of time and for the interaction between time and

treatment. We remind that, coherently with our proposed JM, in the sub-models for the

longitudinal process time is a continuous variable representing the time of measurement,

whereas in the sub-model for the survival process time is a discrete variable representing

the time interval (in semesters), in which the dropout may occur and a varying number

of measurements of the serum bilirubin and of the presence of edema may be observed.

In Table 6 we illustrate the parameter estimates of the JM under the general as-

sumption of MNAR with AR(1) random effects (columns 2-4) and under the specific

assumption of MNAR with time-constant random effects (columns 5-7), other than the

constrained model that assumes ignorable dropout (columns 8-10). We also report the

survival curves (Figure 1) under the assumptions of AR(1) and time-constant random

effects for a generic patient having average characteristics at baseline and randomized to

a placebo (left panel) or a treatment based on D-penicillamine (right panel). In the case

of AR(1) random effects, we adopt the average of 1,000 values simulated according to the

AR(1) process of equation (7), whereas in the case of time-constant random effects we

simulate 1,000 independent values from a Gaussian distribution with mean 0.

From the results obtained under the estimated models we observe that the treatment

based on D-penicillamine has a beneficial effect on the log serum bilirubin and on the

presence of edema; however, this effect is not statistically significant. The same result is

obtained for the probability of free-transplantation survival (see also Figure 1).

Concerning the other covariates, the expected values of log serum bilirubin increase

with the levels of alkaline phosphatase and transaminase (SGOT) at baseline, whereas

they reduce with the level of albumin and are lower for females with respect to males; the

effect of age is not significant. On the other hand, the probability of edema increases with

the age and with the levels of transaminase at the baseline and, on the contrary, it reduces

in presence of increasing levels of albumine, whereas the level of alkaline phosphatase is not

significant. Besides, the effect of gender on the presence of edema is opposite compared to

the effect on the log serum bilirubin: indeed, edema are more common in females rather

than in males.
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MNAR with AR(1) r.e. MNAR with time-constant r.e. MAR

Est. se p-value Est. se p-value Est. se p-value
Longitudinal sub-model - Log(serum Bilirubin)
Intercept -3.677 0.985 0.000 -3.607 0.925 0.000 -3.699 0.969 0.000
Treatment -0.108 0.113 0.342 -0.119 0.101 0.239 -0.107 0.111 0.336
Age/10 0.032 0.054 0.553 0.029 0.050 0.568 0.028 0.053 0.601
Female -0.421 0.168 0.012 -0.418 0.158 0.008 -0.408 0.166 0.014
Albumin -0.711 0.135 0.000 -0.693 0.126 0.000 -0.688 0.133 0.000
Log-alkaline ph. 0.249 0.075 0.001 0.234 0.071 0.001 0.242 0.074 0.001
Log-SGOT 1.135 0.127 0.000 1.136 0.119 0.000 1.130 0.125 0.000
Time 0.118 0.011 0.000 0.094 0.006 0.000 0.109 0.011 0.000
Treatment.time -0.003 0.016 0.852 0.010 0.009 0.239 0.000 0.016 0.990

φ̂1 0.969 0.036 0.000 0.831 0.036 0.000 0.950 0.036 0.000
Longitudinal sub-model - Edema
Intercept -1.084 1.459 0.458 -1.290 1.496 0.389 -1.112 1.443 0.441
Treatment -0.216 0.204 0.291 -0.227 0.204 0.265 -0.215 0.203 0.288
Age/10 0.688 0.083 0.000 0.688 0.085 0.000 0.682 0.082 0.000
Female 0.599 0.248 0.016 0.580 0.252 0.021 0.609 0.245 0.013
Albumin -1.423 0.208 0.000 -1.429 0.212 0.000 -1.397 0.206 0.000
Log-alkaline ph. 0.054 0.106 0.611 0.058 0.109 0.593 0.048 0.105 0.645
Log-SGOT 0.779 0.187 0.000 0.822 0.192 0.000 0.773 0.185 0.000
Time 0.275 0.030 0.000 0.267 0.028 0.000 0.266 0.030 0.000
Treatment.time -0.031 0.039 0.419 -0.018 0.036 0.626 -0.028 0.039 0.467

φ̂2 0.924 0.076 0.000 0.915 0.084 0.000 0.898 0.074 0.000
Survival sub-model
Intercept 2.760 2.398 0.250 3.537 2.238 0.114 – – –
Treatment 0.035 0.371 0.925 0.108 0.339 0.749 – – –
Age/10 -0.362 0.128 0.005 -0.359 0.122 0.003 – – –
Female 0.858 0.376 0.023 0.813 0.354 0.022 – – –
Albumin 2.120 0.339 0.000 1.980 0.315 0.000 – – –
Log-alkaline ph. 0.003 0.171 0.988 -0.057 0.162 0.727 – – –
Log-SGOT -1.306 0.304 0.000 -1.329 0.289 0.000 – – –
Time -0.296 0.048 0.000 -0.286 0.043 0.000 – – –
Treatment.time 0.053 0.061 0.383 0.032 0.051 0.533 – – –

ψ̂ -1.590 0.140 0.000 -1.356 0.135 0.000 – – –
Others
σ̂2
ε 0.074 0.004 0.000 0.247 0.009 0.000 0.077 0.004 0.000
ρ̂ 0.972 0.003 0.000 – – – 0.972 0.003 0.000

Table 6: Parameter estimates for the log serum bilirubin and the presence of edema, under

the assumptions of nonignorable dropout (MNAR) with AR(1) random effects, MNAR

with time-constant random effects, and ignorable dropout (MAR).

Regarding the survival process, the probability of free-transplantation survival signif-

icantly decreases with age and with the levels of transaminase, whereas it is higher for

females and patients having higher levels of albumine. The status of any patient is also

negatively correlated (ψ̂ equals to -1.59 in the case of AR(1) random effects and to -1.35 in

the case of time-constant random effects) with the two longitudinal processes, confirming

that the log serum bilirubin and the presence of edema are two relevant biomarkers of the

health status and cannot be ignored.

As expected, both the log serum bilirubin and the probability of edema increase over

time and, at the same time, the probability of free-transplantation survival reduces (Figure

1).

Finally, we observe that the results in terms of free-transplantation survival under the

two different assumptions about the random effects are quite different, although the esti-
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Figure 1: Survival curves for placebo patients (left) and for patients treated with D-

penicillamine (right), under assumptions of AR(1) (solid lines) and time-constant (dashed

lines) random effects.

mated coefficients appear similar. As shown in Figure 1, the model with autocorrelated

random-effects (solid lines) provides a more positive trend of the probability of survival

rather than the restricted one (dashed lines), both under the placebo and under the treat-

ment based on D-penicillamine. We also observe that the formulation of simpler models

(i.e., with time-constant random-effects or ignoring the dropout) leads to underestimat-

ing the expected values of log serum bilirubin with respect to the model formulation that

accounts for dropout through AR(1) random effects (Figure 2).

With respect to the analysis on the same variables proposed by Bartolucci and Far-

comeni (2015), we observe that our results are only partially aligned with those obtained

by the authors under their “best” model (see their Table 3, columns 8-10). However,

it is important to note that the mixed latent Markov model proposed by the authors is

less parsimonious with respect to our model and, most of all, it provides rather unstable

results, which depend on the number of latent classes that have to be a priori chosen (for

instance, compare their Table 3, columns 5-7 versus columns 8-10).

Moreover, the comparison in terms of goodness-of-fit allows us to conclude that the
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Figure 2: Trend of log serum bilirubin for placebo patients (left) and for patients treated

with D-penicillamine (right), under MNAR assumption with AR(1) random effects (solid

lines), MNAR assumption with time-constant random effects (dashed lines), and MAR

assumption (dotted lines).

proposed model under the MNAR assumption with AR(1) random effects (maximum log-

likelihood at convergence equal to -2,710.57, BIC value equal to 5,604.92 and a number

of parameters equal to 32) always outperforms the models of Bartolucci and Farcomeni

(2015) which do not include time-fixed latent variables (see the first row of their Table

2, with a number of support points of the time-constant latent variable, k1, equal to

1). Even with reference to the same number of parameters, the proposed model has a

better goodness-of-fit than the corresponding model of Bartolucci and Farcomeni (2015).

Finally, the approach of Bartolucci and Farcomeni (2015), being based on a discrete

Markov chain, suffers from the problem of local maxima of the model log-likelihood, as

shown in the lower panel of their Table 2. As observed for the two previously described

applications, the estimation algorithm here proposed does not suffer from this drawback:

in the case of bivariate data, the 100% of log-likelihood values at convergence obtained

through the random rule are equal to the best solution, which corresponds to the solution

reached by the deterministic strategy.
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6 Conclusions

In this article we propose a Joint Modeling (JM) approach to deal with longitudinal data

affected by nonignorable dropout, which is a very relevant field of application especially,

but not only, in medicine. The approach is based on accounting for the unobserved

heterogeneity between subjects in a dynamic fashion, by adopting an AR(1) process.

This latent process has also the role of connecting the longitudinal response process with

the survival process, and the strength of this association is measured on the basis of

suitable parameters. In this way we generalize the typical JM approach (Wulfsohn and

Tsiatis, 1997; Henderson et al., 2000; Tsiatis and Davidian, 2004; Rizopoulous, 2012) in

which the random effects are usually assumed to be time constant.

Our approach is very flexible, as it may deal with response variables of any nature

through a generalized linear model parametrization, and even with counts having an excess

of zeros and categorical/ordinal responses. Moreover, the approach may be also used in

the presence of multivariate longitudinal data in which we observe a vector of outcomes

at each occasion. Parameter estimation of the proposed model relies on a sequential

quadrature algorithm that is rather simple to be implemented and that has been used,

in the simple context in which longitudinal responses are not affected by dropout, in

Bartolucci et al. (2014).

Overall, the proposed approach is comparable with two very recent approaches in the

literature about joint modeling a longitudinal response and a survival process. We refer in

particular to the proposals of Barrett et al. (2015) and Bartolucci and Farcomeni (2015).

Both these contributions are based on a discretization of the time-to-event measurements,

however they differ in the way the time constancy of the random effects assumption is

relaxed. Barrett et al. (2015) adopt a linear mixed Gaussian model for the longitudinal

process and a sequential probit model for the survival process, so as to accommodate

different specifications of random effects. On the contrary, Bartolucci and Farcomeni

(2015) assume that the random effects follow a first order Markov chain with a finite

number of latent states. Different from the proposal of Barrett et al. (2015), the approach

we here propose is more general, as it allows us to deal with response variables of any
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type and, with respect to the approach of Bartolucci and Farcomeni (2015), the present

one has advantages in terms of stability.

These advantages are illustrated by three applications on medical real data. The

first application involves a continuous longitudinal outcome and allows us to validate the

proposed estimation approach through a comparison with the same model estimated by

means of the algorithm proposed by Barrett et al. (2015). The second application concerns

count data with excess of zeros and shows the potentialities of our proposal in applications

involving longitudinal outcomes whose distribution does not necessarily belong to the

exponential family. Finally, the third application involves a bivariate longitudinal outcome

characterized by two variables of different nature (continuous and binary). In all examples,

the proposed approach leads to highly stable estimation results.

Finally, we stress that a key point of the proposed approach is that it has a simple

interpretation and, at the same time, it is flexible and estimable by an algorithm rather

simple to implement (the R software is made available upon request). Given this, we avoid

to explicit consider versions of the proposed model for multivariate data which are based

on a specific AR(1) process for each longitudinal response process. In fact, as we remark

at the end of Section 2.2.2, the resulting model would require much more sophisticated

computational tools, based on adaptive quadrature methods (Rizopoulos, 2012), or even

Bayesian inference tools. However, as we experimented by some attempts for bivariate

longitudinal data, the resulting improvement in terms of goodness-of-fit might be not

enough to justify the additional computational effort.

Appendix

Here we report the results of the additional scenarios simulated according to what de-

scribed in Section 4.1. In particular, for continuous (Table 7), binary (Table 8), and

count data (Table 9), Scenario 5 is characterized by an increase in the number of repeated

measurements, mi = 20, Scenario 6 shows the results of the simulation with ρ = 0.9 and

Scenario 7 assumes a different value of the association parameter γ = 0.5. Finally, for the

case of continuos data, Scenario 8 is characterized by an higher variance of the repeated

measurements σ2
ε = 4.
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Scenario 5 Scenario 6
mi = 20 ρ = 0.9

Parameters True Mean sd se RMSE True Mean sd se RMSE

Longitudinal

Intercept 90.000 89.998 0.115 0.115 0.115 90.000 90.003 0.130 0.137 0.130
Time -1.700 -1.701 0.014 0.014 0.014 -1.700 -1.699 0.014 0.015 0.015

Age at t0 -1.700 -1.700 0.005 0.005 0.005 -1.700 -1.700 0.006 0.006 0.006
Sex 2.000 1.999 0.058 0.059 0.058 2.000 2.004 0.069 0.071 0.069

Survival

Intercept 2.000 1.991 0.221 0.224 0.221 2.000 2.011 0.228 0.224 0.229
Time 0.010 0.011 0.039 0.038 0.039 0.010 0.009 0.037 0.038 0.037

Age at t0 0.010 0.010 0.009 0.009 0.009 0.010 0.010 0.009 0.009 0.009
Sex1 0.100 0.095 0.108 0.107 0.108 0.100 0.090 0.104 0.107 0.105

γ 0.050 0.046 0.072 0.069 0.072 0.050 0.051 0.074 0.073 0.074

Others

σ2
ε 1.000 1.000 0.019 0.019 0.019 1.000 0.998 0.029 0.029 0.029
σ2
η 1.000 0.994 0.041 0.043 0.042 1.000 0.997 0.058 0.058 0.058
ρ 0.700 0.697 0.019 0.020 0.020 0.900 0.900 0.015 0.017 0.015

Scenario 7 Scenario 8
γ = 0.5 σ2

ε = 4
Parameters True Mean sd se RMSE True Mean sd se RMSE

Longitudinal

Intercept 90.000 89.996 0.127 0.127 0.127 90.000 90.003 0.157 0.168 0.157
Time -1.700 -1.700 0.017 0.017 0.017 -1.700 -1.701 0.025 0.025 0.025

Age at t0 -1.700 -1.700 0.006 0.006 0.006 -1.700 -1.700 0.007 0.007 0.007
Sex 2.000 2.000 0.066 0.065 0.066 2.000 1.998 0.083 0.084 0.083

Survival

Intercept 2.000 1.997 0.227 0.229 0.227 2.000 2.009 0.227 0.224 0.228
Time 0.010 0.009 0.038 0.038 0.038 0.010 0.009 0.037 0.038 0.037

Age at t0 0.010 0.010 0.009 0.009 0.009 0.010 0.010 0.009 0.009 0.009
Sex 0.100 0.093 0.106 0.109 0.106 0.100 0.101 0.108 0.107 0.108
γ 0.500 0.506 0.084 0.083 0.084 0.050 0.053 0.112 0.110 0.112

Others

σ2
ε 1.000 1.000 0.032 0.031 0.032 4.000 4.004 0.122 0.116 0.122
σ2
η 1.000 0.994 0.054 0.054 0.055 1.000 1.000 0.110 0.110 0.110
ρ 0.700 0.699 0.029 0.028 0.029 0.700 0.698 0.065 0.065 0.065

Table 7: Mean of parameter estimates, standard deviation (sd), average estimated stan-

dard error (se) and root mean square error (RMSE) for continuous data: Scenarios 5-8.
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